Ibalogic

Programming software for signal management,
simulation and soft-plc

Manual

Version 4.3 en / ibaLogic 3.90c

Measurement and Automation Systems

Manual Seite 3

Welcome to ibalLogic 1
a4 2
Operation and setup
|

Working with ibalLogic

A

Functions and function blocks

Process interface o 02

Additional information and examples b

F 1
Installation
<)

Support and Contact

Glossary NS

References @ B
X €
Index

© iba AG 2009 m

Page 4 Manual

ibaLogic Manual

Issued by

iba AG — : :
Koenigswarterstr. 44 F=a == 3 ’
90762 Fuerth, Germany Lo (L Y
Tel.: + 49 (0)911 9 72 82-0 =5 '- /
Sales -27 == ¥
Support -14 ‘

R&D -13

FAX -33 S_

Email: iba@iba-ag.com

Web: www.iba-ag.com

Unless explicitly stated to the contrary, it is not permitted to pass on or copy this
document, nor to make use of its contents or disclose its contents. Any violation
is treated as an act liable for damages.

© iba AG 2004 all rights reserved.
2th revised edition, ibaLogic Manual V 4.2 en / ibaLogic 3.88b

We have checked that the contents of this manual match the hardware and soft-
ware described here. However, deviations cannot be fully ruled out, so that we
cannot assume any warranty should any deviations actually exist. This manual is
regularly updated. Necessary revisions are included in future editions, or can be
downloaded from the Internet.

The latest version is always available for downloading at:
http://www.iba-ag.com.

We would welcome any suggestions for improvements which you may have.

Version | Date Revision Chapter / pages Author | Version
| | | | | ibaLogic
V43 Feb 12 2009 | ibaLogic-V3-Runtime 1,2,4,5 ko 1 3.90c

m © iba AG 2009

mailto:iba@iba-ag.com
http://www.iba-ag.com/
http://www.iba-ag.com/

Manual Page 5

Contents

Foreword 11
1 Welcome to ibaLogic 1-1
1.1 T e To [Lot o o 1-1
1.2 System properties of ibaLogic in briefcccccoiiiinnnnnn. 1-2
1.3 The plc programming languages according to IEC 1131-3....... 1-4
1.3.1. IEC61131-3 software model..........ccccuumiiiiiiiiiiiii e 1-4
1.3.2. IEC 61131 program organization units (POU)............ccccvvvrvrrrrnnnnnnnns 1-5
1.3.3. SUPPOrted datatyPes........uuuuueuuuuimiiiiiiiiiiiiiieiiieeieeeee e e eeeeeas 1-5
2 Operation and setup 2-1
2.1 Getting starteduueiii 2-1
2.1.1. 1bALogIC-V3 2-1
2.1.2. ibalogic-V3-RUNtIMEccoeiiiiiiiii e e 2-2
2.1.3. Start ibalogic with the command line...........cccceveiiiiiiiiiiii e 2-4
2.2 ibalogic user interface..........uuuuuueuiiiuiiiiiiiiiiiiiieeaeees 2-5
2.2.1. TOOl bar..oo 2-7
2.2.2. HOtKEYS .o 2-7
2.2.3. Combinations of mouse keys and keyboardccccuvviiiiiiiiinninns 2-8
2.3 o] WeTe Lol o' 1T TV TN o - 2-9
2.3.1. "FIl@" MENU e 2-9
2.3.2. "EAIt MENU oo 2-10
2.3.30 "VIBW" MENU .ottt 2-12
2.3.4. "Evaluate" menu ... 2-14
2.3.5. "LaYOUT" M@NU ..euiiiiiiiiee e 2-15
2.3.6. "HOt SWaP" MENU ...iiiiiiii e e eeas 2-16
2.3.7. "TechnoString" MENU.......ccoiiiiiiiiiiiie e 2-17
2.3.8. "Hardware" MeNUcooiiiiiiiiiii i 2-20
2.3.9. "Help" MenuU ..o 2-21
2.4 Program Settingscooceiiiiiiiiiee e 2-22
2.4.1. Menu “File >Program Settings >General................cccceiiiiin. 2-22
2.4.2. Menu “File >Program Settings SEdit..............cccc, 2-24
2.4.3. Menu “>File >Programm Settings “>Conversions............................ 2-27
2.4.4. Menu >Files >Program Settings “>Playback...........cccccccccooooiiiis 2-28
2.5 SYSTEM SETHINGS...eeiiiiiiiiiiiiiiiiieiiiiiiiiet ettt eereeneeenees 2-30
2.5.1. Menu “File ->System settings >Generalccceeeiiiiiin. 2-30
2.5.2. Menu “>File ->System settings >Othercceeeiii, 2-32
2.5.3. Menu “File ->System settings S>Parallelc 2-33
2.5.4. Menu “>File >System settings >FOB IO/ FOB-M..............cceeeeeennn. 2-34
2.5.5. Menu “>File ->System settings **FOB-TDC / FOB-SD-PClI 2-35
2.5.6. Menu SFile >System settings SL2B..........coiiiiiiiiiiiii 2-36
2.5.7. Menu SFile >System settings >L2B 5136..........cccceeeiiiiiiiinnnnnnnn. 2-37
2.5.8. Menu “File ->System settings “>Reflective Memory....................... 2-38
2.5.9. Menu >File >System settings >PCMCIAFoeeeiiiiiiiinnnnnnn. 2-39
2.6 PCl configuration..........ccovvviiiiiiiiiiieeee e 2-40
2.6.1. FOB-IO-PCI Link SEttiNgS....ccceeiiiiiiiiiiieee e, 2-40
2.6.1.1. Characteristics of the asynchronous mode.........c.c.ccoevvvvveennennn. 2-42

2.6.2. FOB-M-PCI Link S€tTINGSceevviiriiiiieeieeeeeeeiiiee et 2-43
2.6.3. L2B-PClI Slave Settingscccoveuiuuuiiiiee et e e e e 2-44

© iba AG 2009 m

Seite 6 Handbuch

2.6.4. FOB-SD/TDC Link Settings.......ccuvviiiiiiiiiiiiiiiieeee e 2-45
2.6.5. Reflective Memory Card settings..........ccceevveeeiiiii, 2-47
2.6.6. TCP/IP Out SETHINGS....cceieeeeiiiiiie e 2-49
3 Working with ibaLogic 3-1
3.1 System limits and boundary conditions.............ccccceeeiiiiiiinnnnn, 3-1
3.2 Important terms and functionsccccceiiiii 3-2

3.3 Which tasks should run how fast — and what does it mean? ... 3-3

3.4 Relation between task cycle, processing time and evaluation% 3-3
3.4.1. Order of task ProCessingccuvvvviiiiiiiiiiiiiiiiiieeeee e 3-4
3.5 The 1/0 system of ibalogiC........ueeiiiieiiiiiiiiiiiieee e 3-5
3.5.1. Identification and naming of I/O resourcesccccccccevvviiiiiiiiiinnnnnnn. 3-6
3.6 Modes of operation of ibalogicccoeeeiiiiiii 3-7
3.6.1. Signal Manager.........cooooiiiiiiiiiii 3-7
3.6.2. SOFE-PLC ... 3-7
3.6.3. TUIBO MOE ...cccoiiiiiiiieeeeeee 3-7
3.6.4. PlaYbaCK. .. .ot 3-7

3.6.4.1. Using the playback functionccccoiiiiiii 3-8

3.6.4.2. Module assignment for playback...........ccccoeeiiiiiii 3-8
3.7 Fault management ... 3-11
3.7.1. Zeros on broken links............coiiiiiiiiiiiii 3-11
3.7.2. Unavailable signals are invalidccccc 3-11
3.8 ibaLogic handling ... 3-12
- T I B T - To T <o [o o T PP 3-12
3.8.2. Right mousebutton..........cccooiii 3-12
3.8.3. Adjust the size of the program area of a taskc 3-12
3.9 Selection and connection of function blocks..........cccccc......... 3-13
3.9.1. Connection lines and branching............cccooooiiiiiiiii, 3-14
3.9.2. IntraPage connectors (IPC)........ccceeveiiieiiiiiii e, 3-16
3.9.3. Off-Task connectors and OPC-connectionsccccceeeeeeeeeeeennnnnnnnn. 3-18
3.9.4. Switch and slider - smart helpers for testing.................c.cccoeoooo. 3-20
3.10 Combining objects and creating macrosccoceeeeeeeeeeeeenn. 3-21
3.11 Creation of a new function block ..o 3-23
3.11.1. Creating a function block without Structured Text (ST) 3-23

3.11.1.1. Operations for simple FB-creation...........cccccccoeevvvvrvreeeesiscnnnnen, 3-24
3.11.2. Creating a function block with Structured Text (ST) 3-25

3.11.2.1. Operations and statements in Structured Text (ST) 3-26

3.11.2.2. Data declarations in Structured Text (ST)coocvivrieieiniiennne 3-26

3.11.2.3. Statements in Structured Text (ST)ccoviieieiniiiiiiiiiiiee e 3-27

3.11.2.4. Function block PT1 in Structured Text (ST) c.ccooeevvviievvveiiieeeeeeeens 3-28
3.11.3. Examples for statements in Structured Text (ST).......cooeeeiiiiinnn. 3-30

3.11.3.1. IF- and ELSIF-statement.........cccccooiiiiiiiniiiie e 3-30

3.11.3.2. CASE-statement ... 3-30

3.11.3.3. FOR-statement ... 3-31

3.11.3.4. EXIT- and RETURN-statement...........ccccoviieiiiiiiiiiiniice e 3-31
3.12 Creating your OWN DLL.......ooooiiiiiiiiiiiiiie e 3-32
3.12.1. C-COMPUIET ..o 3-32
3.12.2. Source files needed for creating DLLS..........cccooeeeiiiiiiiiiiini, 3-32
3.12.3. Procedure for creating New DLLS..........cooeeeiiiiiiiiiiiieeee, 3-32
3.12.4. Frequent obstacles........cccooiiiiiiiiiiii e, 3-33

m © iba AG 2009

Manual Page 7

3.12.5. Linking the DLL in ibalogiC.....c.ceveiiiiiiiiiiiiiiee e 3-34
3.13 Testing and debugging of projectsccccuviiiiiiiiiiiiiiiinnne. 3-35
3.13.1. Single and multiple step mode, halt the project........ccccccvvvviiiiinnn. 3-35
3.13.2. What to do, if values become sporadically invalid? 3-35
3.13.3. The ordinary oscilloscope for testing..........cccuuveeiiieiiiiiiiiiiieieeeeee 3-36
3.13.4. The Multichannel Oscilloscope and Logical Analyzerccc....... 3-36
313041, US0 . it 3-36
3.13.4.2. Operation.......ccouiiiiii 3-37
3.13.4.3. Sample application for multichannel oscilloscope and rfft
function BIOCKcovvvviiiiiii 3-41
3.14 Save the project against unintended changes 3-43
3.15 Password protection and other protecting measures............. 3-43
3.16 The Hot-Swap layer ..., 3-44
3.16.1. Conception of data handling and memory in Hot-Swap.................. 3-44
3.17 Printing @ Project...ccuuueeciiiii i 3-45
3.17.1. Setting the page size for a project.........ccooooiiiiiiiiiiiiiiiiiee 3-45
3.17.2. Inscription and layout of pages........ccccceviiiiiiiiiiiiiiiiii 3-45
3.17.3. Printer control settings.........ccuvvviiiiiiiiiiiiiiiiiiiee e 3-46
3.17.4. Adding your corporate logo on the printed pagescccceevvvnnnnnn. 3-47
3.17.5. Adding your corporate copyright note...........cccvvvviiiiiiiiiiiiiii. 3-47
3.17.6. Printed PAgES ...ccciiiiiiiiiiiiiiiiieiiiieeee ettt 3-47
4 Functions and function blocks 4-1
4.1 Basic fUNCLIONScoovvviiiiiiiiiiieeee e 4-2
4.1.1. Arithmetic fUNCHIONSoeveeiiiiii e 4-2
4.1.2. TYPE CONVEISION....iiiiiiiiiiiee e e e e e e ettt e e e e e e e et e e e e e e e e e eaaa e e e e e 4-6
4.1.2.1. Rules for CONVEISIONccoiiiiiiiiiiiiii e 4-6
4.1.2.2. General type converting functionscocccoeiiiiiiiieniiine e, 4-8
4.1.2.3. Limiting CONVEItErs.......cccoiiiiiiiiiiii 4-11
4.1.2.4. SCaliNg CONVEILEIS ...ccoieiieeiee ettt e e e eeeeeeae e 4-13
4.1.2.5. Convert data StruCtUreccceiiiiiiiiiiiiie e 4-14
4.1.3. String fUNCHIONS ..ooooii e 4-16
4.1.4. Bit-Shift functions and logical operations............cccccoovviviiiiiiiinnnnnn. 4-18
4.1.5. Selection- and MIN-/ MAX-fuNCtionscccccummmmmmmimniiiiiiiniiiinienns 4-19
4.1.6. Comparison fUNCHIONSuuuuuuiieiiiiiiiiiiiiii e eeeearaaaeees 4-20
4.2 Basic FBs (basic function blocks).........c.oevieuiiiiiiiiiiiiiiieeeeenn. 4-21
4.2.1. Register / MUIIPIEXENuuuiieiiiiiiiiiiiiiiiiiiiiiieiiieaeiaeeeeeaeeebeeeeeeeneeenneees 4-21
4.2.1.1. Register function blocks.............cocciiiiiiiieiiiic e, 4-22
4.2.1.2. Shift-register and FIFO function blocks.............ccceciiiiinnnnne 4-23
V0 0 B ~Lo (o T B T =Tt (o o T PPRTRPRTRPIN 4-25
4.2.3. COUNTOE ettt 4-26
4.2.4. Timer/Time functions (Zeitfunktionen).........ccovveeeoieeeeeeeeeen 4-27
4.2.5. Analytic FUNCHIONSuuuiiiiiiiiiiiiiiiiiiiii e 4-30
4.2.6. Communication FUNCLIONS........ccceviiiiiiiiii e 4-32
0 I [[- I o T o Yol L1 1 s o [P 4-35
4.2.8. Special and helpful basic FBs............coooiiiiiiiiiiiicceee e 4-37
4.2.9. Complex funktion bIOCKS.............uuuuiiiiiiiiiiiiiiiiiiiiiiiiee 4-39
T I | B I e Yo { o PR 4-39
4.2.9.2. RAMIP e e 4-41
4.2.9.3. DigFilt - digital filtering of signalsccccoooiiiiiiiiii 4-42
4.2.9.4. DatFileWrite-function block — generation of iba data files (*.dat)4-44
4.2.9.5. DatFileCleanup-function block — clean up the harddisk.............. 4-49
4.3 Global variablesuuuuiuiiiiiiiiiii 4-50

© iba AG 2009 m

Seite 8 Handbuch

4.4 Global FBs and mMacrosccoevveeiiiiiiiieeeeeeeeeecee e 4-51
4.5 (€] 1] o T=1 I 5 1 I I 4-51
4.6 Local FBs and Macrosccoovvuuiiiiiiiiiiee e 4-52
4.7 e Tr= I 1 I8 X 4-52
5 Process interface 5-1
5.1 INPUT F@SOUICES ..ottt 5-1
5.1.1. FOB-F, FOB-IO or FOB 4i- Input ReSOUrcesccccovvvveirneeeeeinneanennnn. 5-2
5.1.2. FOB-F Buffered Mode.............ouuuiiiiiiiiiiiecce e 5-4
5.1.3. Signals from Simadyn-D and TDC(FOB-SD / FOB-TDQ)ccc...... 5-5
5.1.4. Input Resources FOB-M/INcooiiimiiiiie e 5-7
5.1.5. L2BX/2 FIAtNESSciieiii e eees 5-8
5.1.6. Reflective Memory (RM).......coooiiiiiiiiiiiee 5-9
5.1.7. TCP/IP-TechNOStriNG ..cccoeeeieieeeeeeeeeeeeeeeeee e, 5-10
5.1.8. CSV-TeChNOStING ...ccooeiiiiieeeeeee e, 5-12
5.1.9. eCon/PPIO IN — inputs from eCon / eCon32..........ccoovrrrriiieeeeeeeeennns 5-13
5.1.10. PlaybackIN — inputs for the playback operation mode 5-14
T I I IO 1= g =T = o 5-15
5.1.12. System UTC TiME ..ouueiiie et eeeeenees 5-16
5.2 OULPUL RESOUICES ... ccveiiiii et 5-17
5.2.1. FOB-IO or FOB 40-Output RESOUICES......cccevuieeiiieciiii e, 5-18
5.2.2. FOB-F OUT Buffered Mode..........cccooviriiiiiiiiiiiieiieeeeeeeeeeeeee e 5-20
5.2.3. FOB-SD / FOB-TDC OUT — Output ReSOUrces........ccoeevvvvveininreennnnnnn. 5-20
5.2.4. FOB-M /Out — OULPUL rE€SOUICES.....ccvuieieieeeieeeeii e e e e ea e een 5-21
5.2.5. TCP/IP-OUtPpUt RESOUICESiiieeiiieieeii e 5-23
5.2.5.1. TCP/IP-Out PDA - signal outputs to a PDA-system..............cc...... 5-23

5.2.5.2. TCP/IP Out TechnO OUtPULSccceviiiiiiiiiiee e e 5-24

5.2.6. QDA Out- OUTPUL rESOUICESccvunieiiieeiii e et e e e e e eea e eea 5-27
5.2.7. QDA/PLR OUT = FESOUICES ...uienieeniinetieeeeieeeee e e eae e e e e easeneanenss 5-28
5.2.7.1. Channels ... 5-28

5.2.7.2. 3X-Channels for QDA and ibaVision3X..........cccccccvrveiiiiiciiinnnnnn. 5-28

5.2.7.3. Variables.......ccuuuiiiii e 5-29

5.2.7.4. CoNtrols....ccooiiiiiiii 5-30

5.2.7.5. Material tracking (QDA Recorder #6 controls) 5-30

5.2.7.6. SHHP TS .cciiiiiiiiiii e 5-31

5.2.8. Reflective Memory (RM).......ccoooiiiiiiiiiiieeeeeee e, 5-31
5.2.9. eCon/PPIO OUT — outputs to eCon/eCon32cceevrrrriiiiiieeeieeennnns 5-32
5.2.10. Playback OUTooiiiiiiie e e e e e e e e eeeees 5-33
5.3 OPC - CommMmUNICAtION ...uiciiiii e, 5-34
5.3.1. OPC Automation Server Object Modelccooeeiri. 5-34
5.3.2. Installation of the OPC Driver-DLLs...........ccvveeieiiiiiiiiiiiiieeeeeieeeeees 5-35
5.3.3. OPC-sample application with Visual BasiC.............ccccvvvviiiiiiininennnn, 5-37
6 Installation 6-1
6.1 Installation of ibalogic.........ccooooiiii 6-1
6.1.1. Installation with install wizard (for eCon only).......ccccccvvvviiviiiiiinnennn. 6-1
6.1.2. Standardinstallation from CD.............coooviiiiiiiiiiiiceee e, 6-1
6.2 USB dongle.. ..o 6-2
6.2.1. USB dongle and WIindows XPcccoiviiiiiiiiiiiiiiiiiiiiiieeeee 6-2
6.2.2. USB dongle and Windows NTccooiiiiiiiiiiiiiiiiiiieeeceeeeeeeeeeeeeeee 6-2
6.2.3. Security settings in Windows XPuuiiiiiiiiiiiiiiiiiiiieeee e 6-4

m © iba AG 2009

Manual Page 9

6.3 System configuration for ISA-cardscccccuvvvriniieinininiiiiininn. 6-5
6.3.1. Recommended ISA hardware settingscccccevviiiiiiiii, 6-7
6.3.2. The Configuration File "iba_drv.cfg"........cccc 6-8
6.3.3. System Configuration with PCI-Cards...........cccccoeeiiiiiiii, 6-9
7 Additional information and examples 7-1
7.1 Sample listing for DLL creationcccceeeviiiiciiiiiieeee e 7-1
7.1, dIFOIMLAPP e 7-1
7.1.2. SAMPIEDLL. PP it 7-3
7.1.3. SampleDLL.def ... 7-6
7.2 List of reserved names by ibalogic...........occoiiiiiiiieieiiiii 7-7
8 Support and Contact 8-8
Glossary I
References 1]
Index \'

© iba AG 2009 m

Manual Page 11

Foreword

This compact manual provides the information for handling the graphical pro-
gramming software ibaLogic.

The operation of the software is explained for many cases by using typical exam-
ples. In particular cases especially in conjunction with process in- and output
components please refer also to the related hardware documentation.

You can find the latest issue of this manual always on our website
http://www.iba-ag.com in the download area.

This manual contains seven chapters explaining the use of ibalogic and its fea-
tures.

Chapter 1 In the first chapter you'll find an introduction with information about
the most important features of ibaLogic and the standard IEC1131-3.

Chapter 2 This chapter describes the user interface with all menus and dialog
windows. The most important settings of the program and the sys-
tem are described here.

Chapter 3 In chapter 3 you'll find practical advise for working with ibalLogic.
Stages of operation from program design over usage of function
blocks, creation of macros, testing and debugging up to printing are
described in detail.

Chapter 4 All standard function blocks and functions which are available in iba-
Logic are listed and explained in this chapter.

Chapter 5 In this chapter you'll find the description of the in- and output re-
sources and OPC communication.

Chapter 6 System requirements and software installation as well as some special
features when using former ISA-boards are the subject of this chap-
ter.

Chapter 7 In the last chapter you'll find additional information for special topics,
such as program listings, dedicated application examples etc.

Finally, this manual also contains a glossary which serves as a quick-finding refer-
ence to special terms and abbreviations, a list of references and an index that can
help to quickly find the information you need.

© iba AG 2009 m

http://www.iba-ag.com/

Page 12 Manual

This manual uses several symbols which essentially have the following meanings:

Important hint or warning in order to avoid hazard against material or life.

This draws your attention to special features, such as exceptions to rules, etc.

@ A useful tip or clue to make your work easier.

I..l A reference to additional documentation or more in-depth literature.

Q,) Software or file name
é / \ : reference to associated software or sample applications on the CD-ROM.

iba training courses

Hint for training courses by iba concerning related products or subjects

The following notation refers to menu functions in ibaLogic:
>File “>-System settings

Wenn using the trm "mouseclick" we always refer to the left mousekey. In case
the right mousekey should be used it's pointed out.

The software ibaLogic works only with operating systems MS Windows® NT 4.0,
MS Windows® XP or MS Windows® 2000.

MS Windows® NT, 2000 and XP are registered trademarks of the Microsoft Corpo-
ration.

m © iba AG 2009

Manual Page 1-1

1 Welcome to ibalLogic

1.1 Introduction

ibaLogic combines the convenience of a comfortable signal manager and the per-
formance of a powerful soft-plc. Because ibalLogic is often used for high speed
measuring and control applications, very short scan cycles (> 1 ms) and a time-
deterministic behaviour are essential system properties.

Beside an easy handling the great advantage of ibaLogic is the exclusive use of in-
ternational standards in terms of operating system, communications and pro-
gramming language which guarantees the openness, portability and reusability
of application programs created with ibalLogic.

Standard-PCs with Windows® as operating system are the hardware platform for
ibaLogic. As a consequence ibaLogic benefits from all current and future devel-
opments in the PC industry, such as internet technology, remote access and, of
course, the continuing increase of processor performance.

Using a diagrammatical programming language with function block diagrams
makes it very easy for the user to build an application with ibaLogic. Of course,
ibaLogic complies with the requirements of the IEC 61131-3 standard for soft-plc.
The reasons are not only the portability, the easy-to-learn effect or market strat-
egy. Moreover, ibalLogic offers a wide range of solutions for program design and
applications by using consequently the data formats and languages of IEC 1131-
3, e.g. "Structured Text (ST)" as meta language or "STRING" as a convertible data
format.

The flexible process interface and the open communication interface are two of
the major advantages of ibaLogic. The connection to sensors and actors is either
done by international standardized field bus systems (e.g. Profibus), by using the
ibaNet750 I/O-system with components from WAGO/Beckhoff or by using fast
PADU units (Parallel Analog Digital Converter) for control or regulation. The open
communication between ibalLogic and HMI-systems or other higher level com-
puters works with a standardized OPC interface and TCP/IP or "Named Pipes".

ibaLogic-V3-Runtime is the economy-priced version of ibaLogic-V3. ibalLogic-V3-
Runtime is used to execute only a runtime without a possibility to edit the pro-
gram with an editor.

The general applications for ibalLogic are:
Fast signal (pre-)processing and signal distribution

* Signal management and signal preprocessing for ibaQDA, ibaPLR or ibaVi-
sion

= Signal preparation and complex trigger-generation for ibaPDA, ibaQDR,
ibaPLR or ibaQDA

= Fast signal switching and management between ibaLogic and other appli-
cations (e.g. ibaQDA or Visual C++ or Visual Basic programs written by
the user himself)

© iba AG 2009 m

Page 1-2 Manual

Soft-plc in compliance with IEC 61131-3

= PC-based automation system for Windows® with ibalogic as high-class
soft-plc.

» Due toits easy handling and intuitive operation and due to its versatile in-
terfaces and integrated fast online monitoring features ibaLogic meets
perfectly the requirements of revamping existing control applications. If
these existing control applications were written in Structured Text they
could be even reused by ibalogic.

Signal processing

» Condition monitoring system for machines

» Vibration analysis for machines, with sampling rates of up to 25 kHz /
channel

» Monitoring for bearings and alarm message generation

» New ways of quality data recording and monitoring

= Storing signals in iba's *.dat file format and retrieving (playback) recorded
data

Simulation

» Simulation of rolling mill stands, e.g. for training purposes
» Simulation of entire plants, e.g. for testing control and regulation applica-
tions in other automation devices
IEC1131-3 Software-Development-Package

» Platform-independent programming language, based on IEC61131-3 stan-
dards (ST)

1.2 System properties of ibaLogic in brief

O Shortest program cycletime is 1 ms and higher
Q Time-deterministic behaviour with Windows®

Q Userfriendly by Windows-like look-and-feel, easy to learn and to handle;
graphic programming with autorouting support;

a Short turn around time for operation inputs or program modifications.
These actions are executed immediately without compilation. If these in-
puts or modifications are performed in the online-layer they will directly af-
fect the process (!) ("...like wiring a former control cabinet under voltage").

Q HOT SWAP switching, i.e. it's possible to modify a functionblock diagram
while the current program version is still controlling the process. When the
modification is finished a smooth switch-over will activate the new pro-
gram version. This feature is a big advantage particularly for continuous
processes, e.g. in the paper industry or processing lines.

a Programming language, data formats and the functionblock library are in
compliance with the international standard IEC1131-3.

Q The following data types and formats are supported:
Boolean, Integer (16 bit, 32 bit, unsigned 32 bit), double word, float (32
bit, 64 bit), string, time and array (4-dimensional of the previous mentioned
datatypes, except string, homogeneous)

Q An extensive function block (FB) library with many standard and special
functions. A further extension of the library by the user himself is possible.

m © iba AG 2009

© iba AG 2009

Manual Page 1-3

Two methods of creating new function blocks interactively:

Simply, without deeper programming knowledge, by using mathematic
formulas

Extension of the first method by using the "Structured Text (ST)" meta lan-
guage. Thus, it's possible to use “if-then-else”-queries or “for-next” loops.

Program structuring by means of "macro blocks" (MB), made of one level or
interlaced; simple creation of MBs by marking and combining several func-
tion blocks.

An open DLL-interface in order to integrate special functions or technologi-
cal know-how, e.g. by means of “C"” or “C++" programs.

Full support of a hierarchical program design by using the means creation
and integration of macros.

Support of “multitasking” and task-to-task-communication.

A fully integrated product, i.e. all required tools and compilers (ST, C++,
Assembler) are integrated in ibalLogic; easy installation and handling.

Process 1/0 link for the following systems:

Input (typical: Tms) of analog- / binary inputs with fibre optical link be-
tween FOB I/O or FOB 4i PCl boards (unidirectional) and PADUS8/16/32.
Input of fast analog-/ binary inputs (up to 25 kHz / channel) with FOB 1/O-
PCl or FOB 4i-PCl + FOB 40, running in "FOB-M mode" (unidirectional),
linked to Padu ICP / Padu M.

Input / output (typical: 1ms) of analog / binary inputs and analog / binary
outputs with fibre optical link between FOB-IO (bidirectional) and
PADUS8/16/32 and Padu8-O, SLM.....

Input/ output of analog / binary inputs and analog / binary outputs with fi-
bre optical link between FOB-10 (bidirectional) and ibanet750-head module
with connection to WAGO- terminals (I/O delay time is module-specific, see
data sheet of I/O-modules), image copy of WAGO-head: typ. 1 ms.
Diverse interfaces to common fieldbus systems and backplanes, such as
(Profibus-DP, VME-Bus, MMC/S5 u.a.).

Diverse interfaces to plc and control systems of the major brands, such as
ABB, ALSTOM, SIEMENS, SMS-Demag, KVZARNER, PROSOFT, ALLEN-
BRADLEY etc.

Open communication interface

TCP/IP by “named pipes” (for in- and outputs) in connection to PCs and plc-
systems and *.csv —files (comma separated value), e.g. for use in MS Excel
or other programs

OPC interface to standard HMI systems

TCP/IP communication to distributed ibaPDA/ibaQDA and/ or ibaLogic soft-
plc applications

SIMATIC S7 by L2B card (Profibus DP slave module, uni- and bidirectional).
SIMATIC S5 or MMC216 by SM64-10 card, uni- and bidirectional.

Serial interface with 3964R protocol (e.g. Siemens process computer of R-
and M-series).

Simatic TDC interface FOB TDC to GDM (bidirektional)

Simadyn-D interface card FOB SD to rack connection C512/13/14
ALSTOM ALSPA C80 HPC (Logidyn D1, D2) by VME interface card SM128V
System connectors to CAN, Profibus Master, DeviceNet and ControlNet,
coming soon

1

Page 1-4 Manual

1.3 The plc programming languages according to IEC 1131-3

Before the introduction of IEC 61131-3 there was a variety of different program-
ming languages for plcs which were not standardized and very often customized
only for the devices of their manufacturer. Former program-linguistic means, such
as Instruction List were not efficient enough and many solutions could have been
easier with standard languages. Moreover, the periods of professional education
of the maintenance staff were pretty long, particularly when getting familiar with
existing plc applications. The lack of local memory ranges and of symbolic ad-
dressing lead to mistakes which were hard to find.

These deficits were part of the reasons for the definition of Part 3 in the IEC 1131
standard. In IEC 1131-3 the old languages had been standardized and finally
supplemented by the new language "Structured Text" (ST). But the new standard
describes not only the commands and syntax of a programming language. Fur-
thermore, it declares the architecture and structure of a plc system from the
software's point of view.

By means of the new languages, it is possible to describe a complete plc system,
inclusive the hard and software assignment. The new lingual elements are con-
figuration, resource and task. On the programming level there are the elements
program, function block and function.

1.3.1. IEC 61131-3 software model

Statements of the norm with examples:

Q An automation system consists of one or more configuration(s) which are
able to communicate with each other. A configuration is, e.g., a plc rack
with processor and 1/0O-cards or an ibalLogic-PC.

Q Aconfiguration consists of one or more resources. A resource is always as-
signed to one CPU only. One CPU can cover several resources. In ibaLogic
there is always one resource per PC which is called "Layout". Layouts in iba-
Logic are stored either in a *.lyt-file or in a *.txt-file (ST).

@ Oneor more tasks can be assigned to one resource. A significant quality of
a task is its cycle time. This period can be described explicitly. Several jobs
with a mutual time base are combined in one task, e.g. all jobs to be acti-
vated in a 20 ms-period.

Configuration, e.g. ibalogic-PC

Resource 1 (=layer in ibalLogic) Resource 2
Task 1 Task 2
(20 ms) (500 ms)
| | B
Frogram Program

FB = function
IP FE = FB FB H FB ‘1 or function block

Access paih [eg. KO, communications)

Fig. 1 IEC1131-3 software model

m © iba AG 2009

Manual Page 1-5

1.3.2. IEC 61131 program organization units (POU)

According to the IEC 1131 standard functions, function blocks and programs are
program organization units (POU). One general restriction says that all POUs have
to be non-recursiy, i.e. they should not call themselves in a program.

U Functions are subprograms which could have any input parameters but re-
turn only one result. Functions return always the same result for the same
inputs (no memory effect).

Q Function blocks can have many but clearly defined in- and output parame-
ters and they can use internal variables, i.e. there is a memory effect. As an
example for a function block a PID-regulator can be used multiple times in
the same task or by different tasks with different sets of data.

@ Programs contain the interconnection between functions and function
blocks. A program can be written in any of the program languages which
are defined in IEC 61131. The programs are explicitly assigned to a task
with a certain period.

1.3.3. Supported datatypes
The following basic datatypes are supported by ibalLogic:

Typ Range (min) Range (max) Remark
BOOL 0 (FALSE) 1 (TRUE)
INT -32_768 32_767 16-bit Integer
(signed)
DINT -2_147_483_648 2_147_483_647 32-bit Integer
(signed)
UDINT 0 4_294_967_295 32-bit Integer (no
sign)
DWORD 16#0000_0000 16#FFFF_FFFF 32-bit Word (no sign)
REAL 1.175_494_351 e-38 3.402_823_466 e+38 Floating point, sin-
gle accuracy, 32 bit
LREAL 2.225_073_858_507_201_4 1.797_693_134_862_315_8 Floating point, dou-
e-308 e+308 ble accuracy, 64 bit
TIME - 922_337_203_685_477_580.7 | Time, internally de-
922_337_203_685_477_580.8 |ms picted as 64-bit In-
ms teger (signed) with
0.1ms resolution per
increment
STRING 0 1024 chs String of characters
with number of char-
acters including ter-
minal flag (NULL).
ARRAY Structure, consisting of one of the above mentioned datatypes, except the
String-type (which is an array by itself); maximum of four dimensions.
Maximum number of elements: 1048576

Table 1 Supported datatypes

© iba AG 2009 m

Manual Page 2-1

2 Operation and setup

2.1 Getting started

2.1.1. ibalogic-V3 2

If ibalogic is not installed on your PC yet, please refer to 6. There you will find a
detailed description which guides you through the first steps of the installation.

ibaLogic is to be started simply by a double click on the file ibaLogicversion.exe
in the Windows® explorer. Depending on a customized installation there might be
also an icon on your desktop screen or even an entry in the Windows® "Start

menu" which could be used for program start.

@ Accessories
ACD Systems
Games

Microsoft Office Took: o ibal
Norton Antivins
Snaglt &
Startup
5 Internet Explarer

% Office-Dokument offnen Microsoft Access

Mi ft Encel
@ Set Program Access and Defaults \Crasart EHee

Neues Office-Dokument

Micrasoft Outlook

E\"S Windows Catalog Micrasoft PowerPoint

Micrasoft \Word
@ Outlook, Express
.. Remate Assistance

o e ‘windows Media Player

Settings
Search
| Help and Suppart

Run...

Log Off ma...

Windows XP Professional

Tun Off Computer...

rﬂtTStalt
Fig. 2 Start of ibalLogic

If ibaLogic has been started without copy protection lock (dongle) a dialog win-
dow opens with some alternativs for starting ibaLogic even without dongle.

Ma Dongle faund!

- Search dongle again- -
Pleaze connect dongle for ibalogic to your computer and click Retry

on "Retry"".

~Mo Dongle
“without dongle, click on "Mo donale" to start MNa Dongle

ibaLogic with reduced functionality.

~No Dongle - Full Demao =
“without dongle, click on "'4-hour-dema' to start ibaLogic d-hour-dernn
with full functionality, but limited time. After 10 hours of the
program will be terminated automatically.

-Activate eCon

If you have an eCon device connected, | pT part: [LPT1 = -
please select the right LPT port and the activate eCon
Devices: |0 v]

connected devices.

™ Don't show this dialog again Close ibal ogic

Fig. 3 Start of ibalogic without dongle

© iba AG 2009 m

Page 2-2 Manual

In case you just forgot to attach the dongle please plug it now on the serial or
USB interface and click on "Repeat search".

If no online mode and no playback function is requiered you may start ibalLogic
without dongle.

ibaLogic would be started with full functionality, but limited time. After 4 hours
of operation the program will be terminated automatically.

If ibaLogic should be used for operation together with an eCon no dongle is re-
quiered either.

If you are working under Windows NT and want to use an USB-dongle but have
not installed the USB drivers yet, you may do it now. After the installation of the
USB-support just start ibaLogic again. When working under Windows XP or 2000
this option is disabled.

After the start the ibalogic standard screen appears, with the major areas:
a Menu bar

Q Tool bar

a Resource area with resource selection tabs

Q

Task area with task selection tabs
Each task has an input and an output signal margin and a program area.

2.1.2. ibaLogic-V3-Runtime

ibaLogic-V3-Runtime is the economy-priced version of ibalogic-V3. ibaLogic-V3-
Runtime is used to execute only a runtime without a possibility to edit the pro-
gram with an editor. The runtime must be created with ibalLogic-V3 and copied
on the process computer.

The file ,autostart_runtime.lyt” must be created with an ibalLogic-V3-System. ibaLogic-V3-
@ Runtime and ibaLogic-V3 must to be of the same version.

ibaLogic-V3-Runtime has to be installed on the process computer, so the runtime
can operate.

The installation procedure is the same as the installation of ibalLogic-V3.

If you create a runtime file, you have always to use “autostart_runtime.lyt” as
filename. Copy the file “autostart_runtime.lyt” into the directory “...\schematics\”
on the process computer.

The runtime file “autostart_runtime.lyt” is started automatically at the start of
ibaLogic-V3-Runtime. If ibaLogic-V3-Runtime doesn’t find the file you will get an
error message.

Ereror X

Q M walid File Faund For ibalogic runkime license,

Fig. 4 Error message ibaLogic-V/3-Runtime

m © iba AG 2009

Manual Page 2-3

ibaLogic-V3-Runtime is to be started simply by a double click at the icon on the
desktop or a double click on the file ibaLogicversionxy.exe in the Windows® ex-
plorer.

The process and the state of the runtime are displayed at the state window.

status x|
Iritialize Regiztm! ;I
Initialize Briver

Start of Service Manager succeeded
Open zervice logicdry succeeded|
Set FOBF - PC| Mode!

Initialize FOBF - PCIH

Initialize L2B - PCI

Starting D ata Acquizition

Driver initialization finizhed

< =

Fig. 5 State window ibaLogic-V/3-Runtime

If you click the right mouse button at the runtime label at the task bar a context
menu will be displayed like the following.

Restare
Move

Sige

[imimize

Maximize

X Close Ale4ra
Swskem Setkings

Bg iba
Fig. 6 Context menu ibalLogic-V3-Runtime

You may stop the runtime or open the system settings in this context menu.

If you call up the system settings, ibaLogic asks you to stop the running process
of the runtime.

¥ Close Layer x|

:cf?} Abart any evaluation?
L

Mo |

s

If you don’t abort the evaluation only a view to the system settings is possible. If
you abort any evaluation, you may configure the system settings.

The evaluation starts again after closing system settings.

||| ||| You find a amplification of the system settings in chapter 2.5

© iba AG 2009 m

Page 2-4 Manual

2.1.3. Start ibaLogic with the command line

ibaLogic can also be started with the command line. Therewith it is possible to
start ibaLogic with a batch file or with a Visual Studio application.

You can refer parameter by using the command line to start ibaLogic differently.

Syntax of the command line

¢ Command Prompt

Fig. 7 Command line interpreter

C\ibaLogicXXX>ibaLogicXXX —start

» jbalLogic-V3-Runtime: starts the runtime file automatically.

» ibalogic-V3: starts ibaLogic-V3 with an empty layer.
C\ibaLogicXXX>ibalLogicXXX —start configuration\schematics\Datei.lyt

» ibalogic-V3: starts ibalLogic-V3 with a file.lyt and locked the layer.
C:\ibaLogicXXX>ibaLogicXXX —start -dt

You can preset a default value —dt for the base time. This is needfully if ibaLogic
starts for the first time.

XXX=Version number

m © iba AG 2009

Manual Page 2-5

2.2 ibalLogic user interface

After start-up, ibalLogic shows a screen like the following:

+.% ibal ogic Version 3.87f -

File Edit ‘“iew Ewaluate Lavout HotSwap TechnoSting Hardware Help L

|DW”H><|§H$LL‘|E«, }IIHW|!%;&N@ \

D Resources |D Layer Compon tsl D Reportl \ Menu bar =
[+ Lg FOB-F/FOB-10 ?

[-(E) FOB-F Bufferad Mode

[+ FOB-SvFOB-TDC
&3] % FOBMAN Tool bar
[+ Lg L2BxJ/2 Planheit
[+ Lg L2B/In

[#{ @) Reflective Memany Input OthpUt

[+ TCP/P Technostring

5 () SV Technostring signal signal

(e (@) eConPPIO N margir m argin
[#] Lg Flayback IN

4
jj} Ganaratar
> System UTC Time

Resource area Task

Program area

Resource selection

Task selection tabs

Kl | ;ILI

Input Resources Functions | [_] Output Resourses | | [[]] Tasho: soms

Taskl

Fig. 8 ibalogic standard screen

Like in many other Windows® applications, a menu bar (drop-down menus) and a
tool bar with buttons for frequently used commands are located in the upper
part of the screen. The commands of the menu and the tool bar are explained in
the next chapter of this manual.

For the application ibaLogic uses two major areas. On the left side of the screen
there is the resource area. This area is devided into three views, which can be se-
lected by clicking on the tabs on top of the resource area: the recources, the layer
components and the report. Once a view is selected, the corresponding options
appear for further selection at the bottom of the resources area.

The resources are devided into three groups: input resources, functions (incl.
function blocks) and output resources. The desired resource group can be se-
lected by clicking on the resource selection tabs.

To use a resource (e.g. the analog input no. 1 of module no.1 on the FOB/FOB-F
interface card) just click on the desired resource, hold the mouse button, drag the
mouse over the desired part in the task area, i.e. input signal margin, program
area or output signal margin, and leave the mouse button (drag and drop).

If you'd prefer to use the full screen for the task area, just hide the display of the
resource area by choosing the menu > View < none.

© iba AG 2009 m

Page 2-6 Manual

The "Layer Components" section shows all resources and objects which are used
in the current layout. For different requirements there are three different views,
using a tree structure:

Under the tab Hirarchy you'll find for each task the resources distinguished by
their types: FB and Macros, inputs, outputs, off-task inputs, off-task outputs and
intra-page (connectors). In order to find a particular resource, just click on the re-
source name in the tree and the display of the function block diagram will jump
to the corresponding spot and mark the resource.

Under the tab Objects, similiar to the hierarchy-view, all objects which are used in
the layout are listed but in an order sorted alphabetically by object types. Going
deeper in the tree structure leads to the tasks and final instances of these objects.
A click on an object instance will switch the function block diagram to the corre-
sponding spot.

Under the tab Instances, the view is alike the previous one but the objects are
sorted alphabetically by instance names.

The "Report"-view provides two further options: Evaluation order and Feedback-
loops.

The evaluation order of the functions is shown in a tree-structure as well. Below
each task all related functions are listed corresponding to the evaluation order.
The first function is evaluated at first, the last function at last. The knowledge
about the evaluation order is important when troubleshooting complex and en-
capsulated programs. By clicking on the function name in the tree, the display
switches automatically to the corresponding spot in the function block diagram
and highlights the function block.

The "Feedback-loop"-view shows all feedback-loops, i.e. endless loops and unin-
tended recursions which may cause problems if available. All functions which are
part of such a loop will be displayed in the tree, sorted by tasks. To find the re-
lated functions, use the same method as described before.

The application programs created by the user are assigned to tasks. Each task has
its own cycle time (period), e.g. 50 ms. The period of each task is shown in the
task selection tabs. You can switch from one task to another by clicking on the
task selection tabs. All tasks put together are a layout or a project which is stored
both in a *.lyt-file and in a "Structured Text" (*.txt-) file.

As soon as ibalogic is set to evaluation mode or to online mode the "Evaluation
[%] display" appears in the lower left corner of the screen. This display shows the
percentage of time spent for processing the tasks in relation to their defined pe-
riod.

m © iba AG 2009

Manual

2.2.1. Tool bar

The ibaLogic tool bar consists of short cuts for commands as follows:

:'-:. ibalLogic Yerzion 3_87f -
Eile Edit

“iew Ewaluate Layout Hot Swap TechnoSting Hardware Help

DEEX & f @ E | p oo v w5 0| e
A A A A A A A A A A A A

T View controls

- show Ch40Oscilloscope
(or logical analyzer)

- back to parent

(close macro view)

Layer commands

- create new layer (plan)
- open existing layer

- save current layer

- close layer

Advanced controls
——- lock current layer
- activate/deactivate
online evaluation
- switch-over between
act. layer and
hotswap layer

Print command
- print current layer
(all tasks)

Editor commands

- cut selection to clipboard

- copy selection to clipboard
- paste from clipboard
- multiple object selection

Evaluation controls
- execute multiple step
- execute single step

- pause evaluation
- start /stop evaluation

Fig. 9 Tool bar
2.2.2. Hot keys
Key combination Function
<CTRL>+<A> Open an existing layout (*.txt)
<CTRL> + <Backspace> One level back (inside a macro, up)
<CTRL>+<C> Copy marked object to the clipboard.
<CTRL>+<M> Activate multiple object selection (followed by outlining the objects
with the mouse).
<CTRL>+<N> Create a new layout
<CTRL>+<0> Open an existing layout (*.lyt)
<CTRL>+<P> Print current layout
<CTRL>+<Q> Stop evaluation
<CTRL>+<S> Save current layout
<CTRL>+<V> Paste contents from clipboard
<CTRL>+<X> Cut marked object and put it on the clipboard
<Alt>+ <ENTER> Edit marked object
<Alt>+<I> Single step for evaluation
<Alt>+<L> Lock / release online layer
<Alt>+<M> Multiple step for evaluation
<Alt>+<0> Online / Offline-switching
<Alt>+<P> Pause evaluation
© ,baAG 2009 ..

Page 2-8 Manual

Key combination Function
<Alt>+<R> Reset and restart evaluation
<Alt>+<S> Start / Stop evaluation
 Delete marked object

2 Table 2 Hot keys

2.2.3. Combinations of mouse keys and keyboard

LM = left mouse key RM= right mouse key

Keyboard Mouse Function
LM (click) Mark an object in program or resource area
<CTRL>+ | LM (click) Mark another object in program or resource area (successive);

when marking objects which are linked to each other, the
connection lines are marked too.

<Shift>+ | LM (click) Mark another object in program or resource area (successive);
when marking objects which are linked to each other, the
connection lines are marked too.

<Alt>+ | LM (click) Cut connection line and replace it by IntraPage-connector(s);
mouse cursor must point on the line concerned.

LM (doubleclick) On function block: open function block

On symbolic name: change name

LM (hold) Shift view on program area on the screen, when mouse
pointer is placed in empty space (mouse pointer change its
shape to cross pointer)

LM (hold) Selection of one or more objects in program area by outlining
and

shifting a marked object or object group

LM (hold) Changing route of connection lines, when mouse pointer
shows cross-shape at line kinks

LM (hold) Extend the program area by another page on the right side or
bottom side; the mouse pointer has to be placed on the far
right or lowest margin of the program area, then it changes
shape to a double pointer, then draw it over the border to the
right resp. down.

RM Open a context menu, if available, e.g. in program area or on
tabs in the task selection bar.

Table 3 Combinations of keyboard and mouse operation

m © iba AG 2009

Manual Page 2-9

2.3 ibaLogic menu bar

2.3.1. "File" menu

Edit “iew Ewaluate Lag
Hew Chrl+M
Open... Ctrl+0
Open ASCIL.. Chrlwdy
OpenDLL...

Save Chil+s
Save ASCI..

Save bz,

LClose

Change Pazsword...
Print... Ctrl+F
Page Setup...

Program Settings...

Suztem zettings...

PCI Configuration 3
1524 Configuration. .

Restart driver

Enit

Fig. 10 "File" menu

Q File commands

= New: Create a new layout "Project"

* Open: Open an existing layout, (*.lyt)-file

= Open ASCII: Open ASCII file (*.txt) (Structured Text)

= Open DLL: Open an (imported) DLL-function

= Save: Save the current layout as *.lyt-file

= Save ASCII: Save the current layout as Structured Text (ST) in an ASCII-file
(*.txt)

= Save As: Save the current layout in *.lyt- and *.txt-file under new name
Remark: ASCII-Structured Text-files are independent from ibaLogic software
versions and should be used and stored for backup.

= (Close: Close the current layout.

Q Password and printer commands

= Change Password: Enter or change the online password.
After activation of password, modifying, saving and closing the project are
locked by correct password input. Thus, hot-swap layers can be protected
from switch-over.

= Print: Opens a window with a variety of printing options in order to specify
whether to print the entire layout (all tasks) or just a choice of objects.

» Page Setup: Setup of page layout, e.g. page size, margins etc.

Q Settings

* Program settings: Open dialog window for program settings,
see section 2.4.

= System settings: Open dialog window for system settings,
see section 2.5.

» PCl configuration: Open dialog window for PCI configuration,
see section 2.6.

» |SA-configuration: Open dialog window for ISA configuration,
(not available with Windows XP)

» Restart driver: Restart the communication drivers

= Exit: Close and exit ibaLogic

© iba AG 2009 m

Page 2-10 Manual

2.3.2. "Edit" menu

Wiew Ewgluate Lapout HotSwap TechnoStr Hew
| Task = Inzert

Page LClear

Bemove

Cut Chrl _—

Copy Chil+C Configure Task...
! Paste il :
' Multiple Block Select Made Clil+M Fage propetties
! Select Al "'--—._r Inzert Row/Horizontal Page(z]
! Remove Row/Harizontal Fage(z)
I Mew » Ingert Columnertical Pagels)
! Modify Alt+R eturn P\\ Femove Columnertical Pagelz)
' Block Function
! FReplace FEB Function Block... Cirl+5 hift+F
' Delete... DEL Macro Block... Ctrl+Shift+hd
i Off-Task Connectar.. Chrl+ShifteT
| To Back \ Comment... Chrl+Shift+C
| Back to parent Cil+Backspace

Show Multi-Channel-0zcilloscope

Function Block...
» Tiazjeige | feese

S S e

Shova T arget
I EGrEEantents
FETETET
Implode. .. Wi sk Ba i Eatan.,
Enplode... ISGTHHET

Fig. 11 "Edit" menu

Q Task commands:

= New: Create a new Task

= [nsert: Insert a new Task (ahead of the current task)

» (lear: Delete contents of a task

= Remove: Delete the selected task completely

» Configure Task...: Task configuration: definition of task name, cycle time
and size of program area.

Q Page commands:

» Page properties: Open dialog window for entering information to be
printed on the pages.

» Insert or Remove Row / Horizontal Page(s): Insert a new page or row of
pages on top of the current page.

» Insert or Remove Column / Vertical Page(s): Insert a new page or column of
pages left from the current page.

Q Function block commands (1):

» Cut: Cut out function block or multiple selction

= Copy: Copy selected elements

» Paste: Insert selected elements (cut or copied)

» Multiple Block Select Mode: Alter the cursor function to ,,rubber band” for
selection of a group of function blocks, lines and comments

a Function block commands (2):

» New: A further submenu opens for creating a new function block, macro
block, off-task connector or comment.

» Modify: Afurther submenu opens for modification of the above mentioned
blocks and elements. (Element to be modified must be selected)

» Block Function:
Implode: : Build a macro by combination of the selected function blocks,
lines and comments
Explode: : Break down a macro block into its components and insert them

m © iba AG 2009

Manual Page 2-11

» Replace FB: Open a dialog window for replacing one function block by an-
other. Choise of reference to one instance or all instances of the FB.
= Delete: Delete selected elements

You may get the menu "Edit" also by clicking the right mouse key when pointing into the 2
program area (contextmenu).

4 Navigation

OEPIdLE Fo

Delete. . DEL

ToBack

Back to parent Ctil+Backzpace
Show Multi-Channel-0zcilloscope

Shos S ainee

Showe T arget »

Fig. 12 "Edit" menu, navigation commands

» To Back: Put marked object in the background (graphically)

= Back to parent
Switch back to an upper program level, i.e. leave the macro level.

= Show Multi-Channel-Oscilloscope: Open a window for display of the selected
multi-channel-oscilloscope or logic analyzer

= Show Source: Show the connection to the source (task) of a selected off-task
connector (input).

* Show Target: Show the connection(s) to one or more targets of a selected
off-task connector (output).

© iba AG 2009 m

Page 2-12 Manual

2.3.3. "View" menu
TN Evaluate Lavout Hotb Swap
I— - = TazkD_Data
| Task P5 ’ Tazk1_M_intern
; Besources bl
. Layer Components b,
; = v |nput Resources
| epork 3 .
" Mone \ Function Blocks
Dutput Resources

Load rezource descriptions...
' Equalize rezource descriptions

| Hierarchy
| # Onling/Offine Layer Objects
W yEles: Instances

Ewaluation Statistic...
Pipes...

? Diriver statuz messages T
Ewaluation Order
I TCPIP Out... Feedhacks |

Fig. 13 "View" menu

Q Task commands
» Task: Selection of available tasks (e.g. 0..1)

Q Resource selection commands

» Resources
Input Resources: Open the directory of input resources
Function Blocks: Open the catalogue of functions and function blocks
Output Resources: Open the directory of output resources

» Layer Components
Hierarchy: Open a tree structure which shows the objects, used in the pro-
ject (layout), arranged according to their hierarchy, i.e. by tasks. Mouseclick
on an object in the tree will lead to the object in the function block dia-
gram.

Objects: Open a tree structure which shows all objects and instances in the
project (layout), arranged in an order according to their type. Opening the
tree branches will show where these instances are used. A further click on
the taskname will lead to the object in the corresponding task and function
block diagram.

Instances: View similar to previous but sorted according to their instance
names.

= Report:

Evaluation Order: Show the evaluation order of the tasks and their objects.
(top-down).

Feedbacks: Show "endless loops" if present. Mouseclick on shown objects
will lead to the corresponding spot in the function block diagram.

» None: Close the resource area on the screen completely, so that the screen
is only used for program area.

» Load resource descriptions: Load modified descriptions of I/O-resources,
e.g. I/0 resources which had been renamed by an external editor and saved
as CSV-files. (For creation of such CSV-files, just select the desired resource
with the right mouse button and confirm export.)

» Equalize resource descriptions: Signal names from the function block dia-
gram can be used for resource description. Vice versa the resource descrip-
tion can be used in the diagram.

m © iba AG 2009

© iba AG 2009

Q

Manual

Layer control

Page 2-13

Online/Offline Layer: Switch-over between online- and offline layer in "Hot-

Swap" mode.

Values: Display of current signal values of function blocks, task in- and out-
puts in evaluation or online mode. (see example below: "Values on")

cos_1
oS

—[EEmE i o EH{TETEE-

Evaluation Statistic: Monitoring of processing time for each task, see below
[

Evalutation Statistic

Task Narne Evaluation Time per cycle [ms)

mir curent max
Taskd oo 0n 01
Taskl 0.0 0.0 049
Tatal 0.0 01 1.0

Fleset |

Time since start
27s
27

F

Shows an overview about the different tasks with information about task
name, processing time per cycle (in ms) with minimum, maximum and actual
value, the total of these values and the overall runtime.

Pipes: Monitoring of pipe connections

Pipe Viewer
Connection Connection Actual Tatal Bytes per
Status Time Packagez Packagez Second
Configuration Pipe : ?< 1] 1] 1]
Binaty Cut Pipe #1 : bas 0]]
Biary Cut Pipe #2 : r i i il
Binam Out Pipe #3: bl 0]]
Binay Out Pips #4: b 0 0 0
ASCI Out Pipe #1 2 = i 0 0
ASCI Out Pipe #2 b 0 0 0
ASCI In Pipe #1 - b 0 0 0
ASCI In Pipe 2 - b 0 0 0
Tatal: 1] 1] 1]
@ Turbm Spetem) not activated Cancel | 0K I

The "Pipe Viewer" shows an overview of the current status of configured pipe

connections ("pipes").
A See also 5.1.8

Driver status messages: Open a dialog window with status messages about

ibaLogic, e.g. restart of drivers, initialization of registry etc.

TCPIP Out: Open a dialog window with an overview of the current status of

configured TCP/IP connections.

2

Page 2-14 Manual

2.3.4. "Evaluate" menu

Al F
FH
Pause AP | ! % ?
Sitigle Stem At
rultiple Steq CAlEa |
Set Multiple Step Count 2 Steps
Bestart Alt+H v 4 Steps
a5t
Go Orline/Offline AWD ;ESS
Lk A0 alack Waline Laver Al = ;
: 32 Stepz
Abort Evaluation... Chi+0
B4 Steps

Fig. 14 "Evaluate" menu

Q Control of evaluation mode

» Start/Stop: Start/Stop the offline evaluation of all tasks (evaluation mode)

» Pause: Pause or continue the evaluation mode

» Single Step: Evaluation of one program cycle (all tasks)

» Multiple Step: Evaluation of multiple program cycles

» Set Multiple Step Count: Setting the number of steps (2..64) for "Multiple
step"

= Restart: Restart all tasks

Q Control of online / offline mode

» Go Online/Offline: Switch between online and offline mode. The activated
online mode is indicated by purple background color on the screen.

» Lock/Unlock Online Layer: Locking of the current online layer with input of
a password (if a password is defined) will prevent switching to offline mode
and modification of this layer. The online layer must be locked in order to
create a hot-swap layer.

» Abort Evaluation: After confirming the command, online mode resp.
evaluation mode will be interrupted immediately.

l *.-:' © iba AG 2009

Manual Page 2-15

2.3.5. "Layout" menu
Hot Swap Te Left
- Align Objects b---"""'__* Center Honzantal
Right
Adjust Width [Top
Adiust Height '\, Center Yertical
Distribute Dbjects .i Battamn
- v Draw Grid Equalize ta max.
ligr b G Equalize to Presetting
* Adjust to Object
Equalize to max.
Honzonkal Equalize to Presetting
Werhcal Adjuzt to Object

Fig. 15 "Layout" menu

4 Layout commands

The layout commands refer to the representation of objects in the program area
of ibalogic, such as function blocks, off-task-connectors or comments. The ob-
jects concerned should be marked first.

= Align Objects: According to the submenu the marked objects will be
aligned along a common line. The terms Left, Right, Top and Bottom refer
to the object borders, the terms Center Horizontal and Center Vertical refer
to the (virtual) center lines of the objects.

= Adjust Width, Adjust Height: The corresponding submenus offer different
kinds of adjustments
Equalize to max.: More than one object should be marked. This command
adjusts the width resp. height of all marked objects to the widest resp.
highest object in the group.
Equalize to Presetting: One or more objects may be marked. The command
adjusts the width resp. height of the marked objects according to the pre-
settings given in the menu “>File ->Program Settings “>Edit.
The limit in terms of downscaling is the full representation or legibility of
the entire contents of an object, e.g. all input and output connectors of a
function block.
Adjust to Object: This command adjusts the width of an marked object ac-
cording to the full legibility of its contents. In case of a height adjustment
the preset distance between connectors of a function block, given in the
menu “>File >Program Settings “>Edit, is taken into account.

= Distribute Objects: At least three objects should be marked. According to
the preset, given in the menu “>File --Program Settings “>Edit the marked
objects will be distributed in vertical or horizontal direction with an even
distance referring to their left or top edge or with an even gap between
two objects.

© iba AG 2009 m

Page 2-16 Manual

2.3.6. "Hot Swap" menu

pLIS=ITE N T echnoSting

| Create
Sl b Aline Laper
0 [Elmze

2

Fig. 16 "Hot Swap" menu

Q Hot Swap control

» (Create: By means of a hot-swap layer it's possible to create a copy of a cur-
rent layer which is running in online mode, to modify it and to switch over
during operation (,,hot”). In order to create a hot-swap layer the following
steps have to be made:

1.) Switch-over to online mode ,,Go Online”

2.) Lock Online Layer (key button)

3.) Create hot-swap layer (menu <> Hot Swap > Create). This command will
create a copy of the contents of the current online layer without leaving the
online mode. The copied hot swap layer is now ready for modification, but
without affecting the online execution.

= Apply to Online Layer: The modified hot-swap layer will be set online dur-

ing operation.
Remark: When created, the hot swap layer acquires the "memory", i.e. the
values and signal states, of the online layer. When applied to online layer,
the hot swap layer acquires the memory of the online layer again for the
program elements which are already existing. For new function blocks (with
memory) the values and signal states are taken from the hot swap layer.
This manner ensures that changes of values and signals in the online layer,
e.g. operator commands via OPC, don't get lost.

» (lose: Close and leave the hot swap layer. Changes will get lost unless the
layer have been switched online or the changes have been saved.

m © iba AG 2009

Manual Page 2-17

2.3.7. "Technostring" menu

TechnaSting

| ICRAP.. |

Fig. 177 "Technostring" menu

Q TechnoString

TCP/IP: Open the window "TCP/IP Technostring" as shown below which offers the
possibility to assign technostring variables to input variables.

TCP/IP Technostiing E3
Computer Mame : maronde_note Computer Met-10 - 10.0.2 243
Status : connected Technosting Mo.: 1
TCF /1P Port |4DDDD TCRP AP fURing
Coill 037085_T hickEREE width300 ;I
Selection: 225
£+ Apply selected area to variable TCPAP String 14 =]

. TCF/IF Sting 15 ==
" Show selected area for variable TCPAP Sting 16
- .
Delete selected area for vaniable TEP AR Flagt 2
TCP/IP Float 3
TrRPAP Flnat 4 j
Infarmation
Selection azsigned to variable TCPAP Float 1 |
Clear All Selections Apply Port Cancel | ok I

Fig. 18 TCP/IP Technostring, dialog window

In this window one can parse an incoming TCP/IP technostring of any structure.
Its contents can be assigned with reference to the character index either to string
variables (TCP/IP STRING 1...16) or to float variables (TCP/IP FLOAT 1...96).

In order to assign a part of a technostring to a variable please follow these steps:

As a precondition the TCP/IP operation must be enabled for ibalLogic
(menu >File >System Settings “>Miscellaneous)

In the field "TCP/IP Port" enter the correct port number. This port num-
ber must be the same like in the systemg which sends the technostring.
(see box below)

Using another (remote) system send a technostring to the ibalLogic
computer by means of the test program TCPIP Test.exe. The technos-
tring should appear in the dialog window above (Fig. 18).

The decoding of the technostring is strictly index orientated, i.e. the incoming string must
@ always have the same format.(Peril when suppressing leading zeros!)

Check the box "Apply selected area to variable"

Then mark the desired area in the technostring field by using the mouse
(hold left button), in this example "2.25". The selected characters are re-
peated behind the term "Selection:"

© iba AG 2009 m

Page 2-18 Manual

Then select the desired variable in the variable field, e.g. TCP/IP Float 1,
and doubleclick on variable name or click OK.

Repeat steps 4 to 6 for other variables if required.

In order to check the correct assignment of technostring and variables,
just check the box "Show selected area for variable" and select one of
the recently assigned variables. The corresponding part of the technos-
tring will be highlighted.

When you've finished, click on OK to close the dialog window.

When exiting the dialog window the ASClI-file iba_tcp.cfg is created in the folder
configuration in order to save the assignments.

ibalogic uses the default value 1500 as TCP/IP port number for technostring communica-
tion (reception), unless another port number is saved in a file iba_tcp.cfg.

If a different port number has to be used for technostring communication because this
port is used for other kinds of data exchange, then enter a new port number in the dialog
window above (Fig. 18) and click OK in order to create the file iba_tcp.cfg.

If this file is available at startup of ibaLogic, the included port number will be used.

m © iba AG 2009

© iba AG 2009

Manual

Page 2-19

Remark: In order to verify the proper work of the technostring function in the network, a
test program tcpip.exe is in the scope of supply of iba.

Simply enter the network address (name and IP-address) of the lokal PC and select a port

number.

Enter the IP-address of the target-PC (running with ibalLogic) and type in a text message.

Then enter the same port number in the mask as shown above on the target PC.

Set the lokal PC on "this Node is Active", click on "Connect" and then on "Send". The mes-
sage should appear in the field as shown above on the ibalLogic-PC.

{ifiiba TCP/IP test program : Version 1.1 13/09/99 =] 3
File Help
Mode Select ~ TCRAP Info for this Mode

& Thiz Node is Active

€ Thiz Node iz Passive

Dizconnect |

Mame |maronde_ws2

Address

|1 002252

4]

oy

Port: |4DDDD Statuz: Connected
Send Ta: Feceived From: Butes Received
[10.02243 1002243 120
CoilMo870E5_Thick2. 25 *idth300 ﬂ 0100 ;I
oo
ooz

Last Event: [Send succeeded

~ PaduSimulation

" MODBUS

¢ ibaLogic INFO Charmel

 YIP Real Format
NumbeerVaIuesl 32
& ihalogic Fomat :I_

Madule Mr

lg— Cycle [meec] |1 oo

 WIP Integer Format [Shways 32 values)

Humber |1

EXIT |

Send Burst |

2

Page 2-20 Manual

2.3.8. "Hardware" menu

EIGUEICE Help

Check Driver

Installed hardware

lbaDiag Check FOB-E...
Davice managar / Check FOBA/0...
|52, diagnostic r Check Profibus. .

Fig. 19 "Hardware" menu

Q Hardware

» Check Driver: Open dialog window "Check Driver" (see below).
Check Driver E

Driver Yerzsion: 3400
Diriver Interrupts : 3601759
Interpts [145] 937

ok I Cancel |

If installed properly, "Interrupts [1/s]:" should show approx. 1000. (may
vary). Exception: FOB 4i PCl in asynchronous mode.

» Installed Hardware: The system detects automatically the (iba) hardware
components which are installed in the computer and shows the number,
sorted by types.

Installed hardware

ibatd aphdbd. sys version: 270
L2B PCI Cards:
L2E PCI Processors:
FOEF PCI Cards: 1
FOEF PCI Processors: 4
FOBEM compatibel O
FOB TOC Cards: 0
FOE TDC Processors: 1]
FOB 5D PCI Cards: 0
FOBE 5D PCl Processors: O

0k I Cancel |

The example above shows that a FOB 4i PCl card is installed (one card and
four processors).

0
0

» |baDiag: Start the diagnostic program ibadiag.exe, which is part of the
scope of supply of iba.

#3 IBA Diag - V1. 0. 0.1 (32)

Connect Help

Computer. MaRONDE_WS2

¥
& Key FOB-4PCl disgnostics I Active
Pot PLIBus

Board | Pracessar 0| Prosessar 1 | Pracessor2 | Processar 3| Heiew |

PCl Inf

SlotNumber: | 17 101 Address: |0x0000E 000 |0Length: [*0=00000080
BusNumber. 1} Mem.Addiess; [<DFOD00O0 Mem Length: |"0=00100000

Wendorame:| Ingenieurburo Anhaus GmbH Deviceld: #4634

Diagnose | Download

m © iba AG 2009

Manual Page 2-21

Example for the display of ibaDiag.

ibaDiag can also be started independently from ibaLogic on a PC.

Beside the detailed view on the cards ibaDiag also provides a lot of infor-
mation about the PCl-bus and the connected components.

'..I For more detailed information about the program ibaDiag please refer to corresponding 2
—~— manual sw_man_ibaDiag_en_a4.pdf (or ..._LTR.pdf for letter format).

= Device manager: This menu command works only with Winows XP. It calls
the Windows device manager for display of drivers and hardware settings.
If iba I/O cards are installed in the PC you'll find a branch which is called iba
Devices in the tree structure of the device manager window. Open this
branch and you'll find the installed iba cards. A doubleclick on the card icon
opens the information dialog.

= |SA-diagnostics + submenu: Open the dialog window for FOB-F, FOB-I/O
(see example below) or Profibus via the submenu if the corresponding ISA-
hardware component is installed.

Check FOB_I/0 E

Firrnware Yersion : iba FOB-F %1.02 8104 FIDA2 441.2 FOB-IO

Base Address : Board 1D: —0Opt. Link: 7 —CH:— ~Analog:—— ~Dig.: ﬂ

o o

) D00 ! 2 e o 2 0

£ IAUEN e 2 gg 15 g

& (00000 :3: b g 04 2 0

) EDET e 05 0 0

0& 4 1]
- Display— .

telegram counter E5 RES79 FOE 140 g; 15 g
telegram counter E8: RES82 & I_ 0 5 0
telegram counter EB RES82 I Dn - ; q
telegram counter EE: RES82 U : d
go tedlegra[mMc;u?ter: 3?351 ™ 1/0 Mode activated

audrate it] 8 .
e Ermit): 0 ED:?_I.;D !Ilf: Founter : 952
Framing Error(s] : 1] UITET awiich - i
Floatingpoint Data : no Diriver Wersion : 3400
Check running 2] : 494 Criver Intermupts : 505963
™ ResetWatchdog Interupts [1/5]: 1000
Wwatchdog Time Setting 1] ‘watchdog Timer 1]
‘watchdog Time Check 43981 ‘Watchdog Expiration(z] 0
‘Watchdog PC counter 1] ‘watchdog min. Timer
W 1] ‘Watchdog status 0x0

Cancel |

Example of an ISA-display.

New systems of iba will be equipped with PCl-cards only, because the ISA-bus
technology is in a dead end and not supported anymore in the PC industry.
In case of use of ISA cards we'd like to refer to Version 2 of the ibalLogic
manual.

2.3.9. "Help" menu

Contents

About...
Fig. 20 "Help" menu

= Contents: Open Online-help function (requires help file)
= About...: Display of current ibaLogic software version

© iba AG 2009 m

Page 2-22 Manual

2.4 Program settings

2.4.1. Menu “>File -Program Settings >General

Program Settings [7] %]

General | Edit I Ennversinnsl F'Ia_uhackl

2 — Directorie:

Global Resource Path J
Configuration Path IC ‘ibalogic\configuration J
Logfile Path IEI “ibalogichconfiguration J

— Activate Evaluation Timeouts

[T Task [ms) ISU
™ Oniine [sec) |5

—Automatic loading on program start
& Mathing
" Load last layer saved

" Load and stait last laver saved

~ Function blocks in resource tree Sorting in Hierarchy ———————————
' Mame fasZz

% Mame : Desciiption % AsZ avz

' Description

i~ waming Mo dongle at staftup————————————
¥ ‘warning on feedback loops ™ Dot show warring dislag

v ‘wamning when switching Orline-> Dffling ’7

0.8 I Abbrechen iEerrethmen

Fig. 21 Program settings, general

Qa Directories

» Globale Resource Path: Pathname for global resources, i.e. libraries, mac-
ros, function blocks (FBs) and DLLs created by the user.

» Configuration Path: Pathname for Configuration with DLLs, FBs, macros,
libraries and functionblock diagrams (projects *.lyt / Structured Text *.txt).

» Logfile Path: Pathname for the logfile, which is generated by ibaLogic.

Q Activate Evaluation Timeouts:

The evaluation or online mode will be interrupted as soon as the adjusted
evaluation timeout(of the task (e.g. 50 ms) or ibalLogic (e.g. 5 s) has passed
(watchdogs). This function interrupts unintended continuous program loops, cre-
ated by the user, or reactivates ibalLogic in case of an major error.

iff The evaluation may also be aborted if the values entered for evaluation timeouts are too
low.

Q Automatic loading on program start:

Definition of startup behaviour of ibalLogic; this is to activate the automatic start-
up or to shortcut the continuation of engineering.

m © iba AG 2009

Manual Page 2-23

Q Function blocks in resource tree:

Select how the functions should be displayed in the resource tree: with name or
with description or both.

Q Sorting in hierarchy:

Regel fur die alphabetische Sortierung der Objekte in der Ansicht "Layer Kompo-
nenten" / "Hierarchie" (Ressourcenbereich); ohne oder mit Unterscheidung der
GrofB-und Kleinschreibung.

Q Warnings:

» Warning on feedback loops: This option enables the "endless loop"-
detection of ibaLogic which informs the user already during the program-
ming about feedback loops.

» Warning when switching Online -> Offline: This warning is to avoid an un-
intended switch-over to offline mode when the process is running.

Q No dongle at startup:

If this box is not checked a message will appear during startup of ibaLogic in case
that no dongle has been detected. The dialog window offers some alternativs for
starting ibalLogic even without dongle, e.g. demo mode or eCon mode.

© iba AG 2009 m

Page 2-24 Manual

2.4.2. Menu “>-File >Program Settings >-Edit

Program Setlings EHE

General Edit |Conversions| F’Iaybackl

— Preset

Default Yalue Type in Dialog ILHEAL hd
Default Aray Tupe in Dislog Set... |
Default user - shart sign I‘

i~ Wiew Value:
Walue Pad Width (grid paints) |1 0| grid

Fieal number accuracy [digits] IB arid

¥ External Irputs ¥ External Outputs
¥ Bos Inputs ¥ Box Dutputs
— OTCAPC-Size Autoscroll
' Manual " MNone
& Automatic " On action (left mouse button down)
" Fired Size 205 | pisel ' On 4l mouse moves

—OPC Cornektors———————— - Name Generation of Macro Connectors
[~ OPCowiting sets default values ' utomatic
 Fiom extem connections

' Fiom intern cannections

—Layout Settings———————— ~ Dishibule objects

Adjust object size ‘width Height & Even distances fom left/top edge

Funition blocks |1 0 10 | aid Even gaps
Eemnents I20 20 | gid Distance of infout connectors |1 grid
DIEAIFE |25 i Distance of gridiines I'I 0 gid

oK I Ahhrechanl Ul_jernehmenl

Fig. 22 Program settings, edit

a Preset

» Default Value Type in Dialog: Predefined datatype, e.g. LREAL in FBs
» Default Array Tape in Dialog: Predefined arraytype, e.g. 2-dimensional

LREAL
= Button "Set": setup dialog for default arraytype
Diimension |1_j Type m
Start Index Stop Index
o .5
2 "
3 "
4 .
Defaul [15107]
LCancel |

With changing the dimension, using the up/down buttons, one- to four-
dimensional, the corresponding index fields below can be activated.
Start index and stop index, resp. their difference, decribe the number of ar-
ray elements for each dimension.
The display field "Default" shows the number of array elements and the de-
fault values. The example above shows an one-dimesional array with 16
elements. The value of each element is 0.0.

» Default user —short sign: The user may enter his initials here. They are used
for example, in the printouts of the layout.

m © iba AG 2009

Manual Page 2-25

Q View Values:

By using menu >View > Values it's possible to view the actual values of signals
in FBs and of in- and outputs, if selected by the check boxes below.

» Value Pad Width [grid points]: Adjustment of number of digits for value
display at the FBs in evaluation and online mode, given in grid points. You
may get a better idea of the size of a grind point when you switch on the
grid display in the program area (menu >Layout “>Draw Grid).

» Real number accuracy (digits): Number of decimal places for Real and LReal
values;

= Check boxes for input and output types: Selection of types to be displayed;

O OTC/IPC-Size:

Selection of the size of graphical representation for new off-task and intra-page
connectors. For example, in mode "Automatic" the connector size will always be
adjusted to the name of the connector.

Q Autoscroll:

» None: Autoscroll is switched off, i.e. the navigation in the program area oc-
curs by pushing the left mouse button and moving the cursor.

= On action (left mouse button down): Navigation either by pushing the left
mouse button (s.a.) or automatically when shifting FBs or drawing connec-
tion lines.

= On all mouse moves: Autoscroll is switched on, i.e. navigation in the pro-
gram area occurs every time the cursor is close to the window margin.

O OPC-Connectors:

» OPC-writing sets default values: If this option is selected, the default value
of an OPC-connector may be overwritten by an OPC-client. Using this fea-
ture each new value, e.g. manually entered via an HMI system, is taken for
the new default value by the OPC-connector. Thus, the OPC-connector takes
the latest actual value as default in case of a program restart. If this option
is not selected always the same default values as engineered will be used.
The use of this option is only relevant for OPC-connectors with an activ
OPC-> ibalogic flag.

= Use new OPC Server version: The usage of the new OPC Server is strongly
recommended.

Q Name Generation of Macro Connectors:

Each connector of a function block has a name. When combining several function
blocks to one macro block (implode) the new input and output connectors of the
new macro block are created at the cuts of the connection lines between the ob-
jects inside and outside the macro block. Depending of the choice of this option
the input and output connectors of the macro block will be named automatically
or according to the connctor names of the inner, resp. outer function blocks.

Q Layout Settings

The layout settings are used for the functions "Adjust Width" and "Adjust Height"
in the menu “>Layout. The values are given in grid points as unit.

= Function blocks: Presets for the size of function blocks

= Comments: Preset s for the size of comment fields

» OTC/IPC: Preset for width of off-task and intra-page connectors
A See also chapter 2.3.5

© iba AG 2009 m

Page 2-26 Manual

Q Distribute objects:

» Even distances from left / top edge: Marked objects (at least three) will be
positioned in even distances with reference to their top or left edge when
the function "Distribute objects" in the menl “>Layout is used. Overlapping
of objects is may occur.

» FEven gaps: Marked objects (at least three) will be positioned with even dis-
tances between them when the function "Distribute objects" in the menu
“>Layout is used.

Other settings:

» Distance of in/out connectors: A minimal distance between two function
block input or output connectors can be set. The setting will be applied
when using the command "Adjust to object" in the menu >Layout—>Adjust
Height.

» Distance of grid lines: The distance of grid lines given in grid points as unit
may be entered here. In order to see the grid just choose menu “>Layout
>Show grid.

7 See also chapter 2.3.5

m © iba AG 2009

Manual Page 2-27

2.4.3. Menu >File >Programm Settings “>Conversions

Program Settings [7] x|
Generall Edit Conversions IF'IaybackI

Specify action when ting to connect different types:
Connect if possible losz of accuracy
’7(" na O aSK " pes

&dd Converter
o & ask © yes

Remave existing 'reverse-converter
’7(" o & ask © yes
Feplace existing converter
’7(" no & ask © yes

ok I Abbrechen WEemethmen

Fig. 23 Program settings, conversions

The selection of these options will define the actions ibaLogic performs automati-
cally in an attempt of connecting variables of different datatypes.

Q Choice:

»= Connect if possible but loss of accuracy

» Add datatype-converting function block (converter) to the connection

= Remove existing 'reverse'-converter

= Replace existing converter
Default setting is "ask", i.e. in case of a datatype conflict when making a connec-
tion a dialog window will pop up urging the user to confirm or reject the action.

© iba AG 2009 m

Page 2-28 Manual

2.4.4. Menu “>Files >Program Settings >Playback

Program 5Settings HE
Ganerall Edit I Corwversions Flapback |
— Data soure:
Dat file ID'\D ath704200.dat
starttime |1?.1D 2003 16:41:31.553
2 chk 0.02
frames 000000005395

— Select time range:
File manual Timescale

start [sec] ID o I) shsolute
& relative
stop [sec] |1D?.888888 r |
—Repeatmode———————————— Replay mode——————————
i~ Fun ohce " wait until time elapsed
" Repeat I] iz " do not wait
" Run forever
Madule assignment »> |
oK Abbrechen Eermetmen

Fig. 24 Program settings, playback

Q Data source:

= Dat file: Path and name of the data file (+.dat) which is supposed to be
used as signal source. Please use the button = to browse if needed. If a
valid file has been found, the signifcant information is displayed in the ap-
propiate fields (starttime, sample time and number of samples).

Q Select time ranges:

This option allows to limit the range of time in the data file which should be re-
played in playback mode. For manual entries of start- and/or stoptime please
check the corresponding boxes.

Q Repeat mode:
Choice of how often the data should be replayed.

Q Replay mode:

In order to reach a realistic replay it is necessary that the task-cycletime of iba-
Logic is equal or smaller than the sample rate of the recorded data. When in play-
back mode, ibalLogic acquires a new sample from the data file in each task if the
cycletime equals the sampletime of the recorded data. If the cycletime of ibaLogic
is shorter than the sampletime of the data, the selection of the replay mode has
the following results:

» wait until time elapsed: after reading one sample ibalLogic waits until the
sampletime has elapsed before acquiring a new sample from the data file.
(example: ibaLogic cycletime = 5 ms, sampletime in data file = 20 ms >
ibaLogic acquires new samples every four cycles, for three cycles the same
value is used.)

m © iba AG 2009

Manual Page 2-29

= do not wait: ibaLogic acquires a new sample in every cycle. As a result the
playback looks like a time-lapse shot.
If the ibaLogic cycletime is longer than the sample time of the recorded data sig-
nals may "get lost" because ibaLogic takes the actual value in each cycle with refer-
ence to the correct time from the data file. The choice of "waiting" or not is irrele-
vant.

4 Button "Module assignment"
Open the dialog window for assigning the input signals.

7 See also chapter 3.6.4 for further information.

© iba AG 2009 m

Page 2-30 Manual

2.5 System settings

2.5.1. Menu “>File >System settings >General
System Settings [2] %]
Reflective Memory I Other I Parallel I PCHMCIAF I
2 Geredl | FOB/AD/FOBM | FOB-TDC/FOBSDPCI | L3 | LB
~ Intenupt setup Operating mode——
€ ISAPCMCIA N |5 3: Signal Manager %
f* PCE Flease select Board which should generate the interupt SERIALE
I j Turbo Modus |
Flayback -

— General setting; Options for input signals

Samplingtime I'ID 3: ‘W atchdogtime: ISD 3: unavailable Zeros on r

_swgngls ae [brokes link
Pipe Subcycle IU 3: ‘watchdog enable [intvaiid

Save configuration I Claze | AutoConfig |

Fig. 25 System settings, general

O Interrupt setup:

Selection of interrupt for ISA-boards or of the PCl-board, which is supposed to
generate the interrupt.

Q Operating mode:
Selection of the operating modes of ibalLogic

» Signal Manager mode: The Signal Manager mode ensures that ibalLogic
won't miss any incoming sample even if single tasks have been obstructed,
i.e. "Evaluation [%]:" has been > 100 %.
see chapter 3.6.1.

» Soft PLC mode: The Soft-PLC Mode which is suited for control and regula-
tion tasks ensures that only the freshest signal values are processed.
see chapter 3.6.2.

» Turbo Modus: Only to be used on PCs with double processor; if enabled one
processor will exclusively be used for ibalLogic evaluation.
see chapter 3.6.3.

» Playback: A data file of iba's *.dat-format which had been recorded before
by ibaPDA, ibaScope or even ibalogic, serves as a signal source;
see chapter 3.6.4.

Q General settings

» Samplingtime: Setting of the basic cycletime for ibaLogic layouts. It should
be shorter than the shortest task-cycletime used.

» Watchdogtime: Setting of the watchtime for the watchdog function. If the
watchdog function is enabled (checkmark in the box) ibalLogic sends peri-
odically watchdog telegrams to the related iba PC-cards. These telegrams
should be sent by ibalLogic to the cards always within the watchdog time,
like a trigger. The supervision of this process is done by the PC-cards, which
"know" the time setting. If the watchdog telegram, i.e. the trigger, is not
sent within the watchdog time, the cards lock the outputs on the fiber-
optical side and reset them to zero (supported only by FOB 10, FOB 4i/40
[FOB-F]).

m © iba AG 2009

Manual Page 2-31

» Pipe Subcycle: A factor (integer) may be entered in this field. This factor re-
fers only to the transmission rate of QDA-pipes (see also chapter 5.2.6). The
pipe subcycle controls the transmission cycle of the QDA-pipes by using a
multiple of the ibaLogic samplingtime (above). The use of this factor is only
reasonable if the QDA-pipes must not be processed within the sampling-
time. Thus the processor load may be reduced.

Q Options for input signals

» unavailable signals are invalid: Input resources of iba PC-cards (FOB |0, FOB
4i, L2B x/8 etc.) will be marked as invalid with a red frameline if the related
card is not installed in the PC resp. unavailable.

= zeros on broken link: In case of a broken (optical) link to the input cards
this option will cause the firmware of the cards to send zeros instead of the
last value for the related input signals.

7 See also chapter 3.7.1

@ Altered settings will only be applied after clicking on the button "Save configuration".

© iba AG 2009 m

Page 2-32 Manual

2.5.2. Menu “>File >System settings >Other

Sysztem Settings HE
Gererd | FOBAD/FOBM | FOBTDC/FOBSDPCI | L8 | LeBs1s |
Reflective Memory Other Parallel I PCHMCIAF
T — T
¥ ictivate [Activate
Configuration | Bl I-I j Stapbits I1 j
Baudrate |384UD j Fietry |1 j
Playoack Setthgs——————— | gy, g =] Timeow [0
with Hw' 1/0 & - e ” -
arity o ¥ i
without Hu/ 140 @ e
Save configuration I Cloze AutaConfig

Fig. 26 System settings, other

This dialog is used for selection of other types of links for input and output sig-
nals.

Q TCP/IP:

Activate / inactivate the TCP/IP link as a source of data. TCP/IP must be activated
(checkmark) for inputs/outputs via ABB VIP or Modbus (TCP/IP), for usage of
technostring, for working with dlls which use TCP/IP communication and for us-
age of the function block "TCPIP_SendRecv. By clicking on the button "Configura-
tion" the dialog for TCP/IP settings opens. The dialog "TCPIP settings" is used to
make the required settings for connections over TCP/IP, see also chapter 2.6.6

Q 3964

Activate / inactivate a serial link, e.g. of type 3964 R (DUST). The setting of the in-
terface parameters should be done according to the target system. For a commu-
nication over 3964 there are dedicated function blocks available in ibalLogic.

Q Playback Settings

With or without HW /O, i.e. with or without using the hardware inputs and out-
puts during playback operation. This feature allows to extend the range of appli-
cations for the playback mode. When "with" has been selected, data from a data
file may be processed together with hardware signals. In order to avoid an over-
lapping of playback signals and hardware signals, special playback input re-
sources are provided. See also chapter 3.6.4

@ Altered settings will only be applied after clicking on the button "Save configuration".

m © iba AG 2009

Manual Page 2-33

2.5.3. Menu >-File >System settings “>Parallel

Spstem Settings HE
Genersl | FOBAO/FOBM | FOBTDC/FOEsDFCI | L2 | LeBsisE |
Reflective bMemony | Other Parallel | PCHMCIAF

Zem Mask: 0zA041ddDDalaZnnnn

4041 eConAnalog Out 0.1 High-Byte eCon32 Digital Out 0..7.8.15

Port dd elCon M/a eCon32 Digital Out 16..23

(8]0] eCon Digital Dut 0.7 eCon32 Digital Dut 24. 21
Devices ID 'I alal eCon Angalog QOut 0.1 Low-Byte eCon32 Nf&

nn eCon N/ eCon32 N2
ZemonDevice 0—————— (ZemonDevice 1 ——————————————————
eCon eCon &
eCon3z eCon3z

free i IDKBDEDDDDI]DDDI]DDDI] free (‘IUHBUEUDDDUUDDUUDDU
Save configuration I Cloze | AutnEnnhgl

Fig. 27 System settings, Parallel

a Parallel

= Activate: Activate / inactivate the parallel inetrface of the PC (printer port,
Ipt). This interface can be used for input and output of signals by connecting
the eCon- and eCon32-devices from iba to it. Parallelschnittstelle des PCs
(Druckerschnittstelle, LPT). This fuction is also available without a dongle.

= Port: From a pick-list choose the interface which is connected to the eCon-
device. The BIOS of the PC must be set to bidirectional or EPP mode for this

ort!
. gevices: From the pick-list choose whether one or two eCon-devices should
be used.
0 ...if only one eCon is connected or
...if two eCons are connected but only the first one to be used
1 ...if two eCons are connected but only the second one to be used.
0&1 |...if two eCons are connected an both to be used.

a Zero on Device 0/ Device 1

Check the radio buttons according to type of eCon-device(s) used at first and/or
second position. Predefined zero masks are activated depending on the selection.
The zero masks are used in order to reset all outputs of the eCon-devices when
the layout has been switched to offline mode. Masking the outputs is done by
means of a 16-digit hexadecimal number. Depending on device type the interpre-
tation of the Bit-assignment in the masks differs. With the third selection (free) it
is possible to setup an individual mask. Even other values than zero can be set to
the outputs. But the latter option is rather unusual because it's generally expected
that the outputs are set to zero when the layout is switched to offline mode.

7 See also chapter 5.2.9

@ Altered settings will only be applied after clicking on the button "Save configuration".

I..l A more detailed description of the system configuration for the use of eCon-devices is
N available in the special ecOn-documentation:

hw_man_econ_en_A4.pdf

© iba AG 2009 m

Page 2-34 Manual

2.5.4. Menu “>-File >System settings >FOB 10 / FOB-M

Sysztem Settings HE
Fieflective Memony | Dther | Parallel | FCMOIAF |
General FOB/AD/FOBM | FOB-TOC/FOBSDPC | L8 | L2B5138
~ Interupt mode of FOB-PLI board:
Used by
Board 1d Interrupt mode ibalogic
|FIIIE-4|-F'D inSlot 12 on Bus 2 IMaster mode # internal j i

Corfiguration FOB A0 | anfiguration FOB/RE

Save configuration | Cloze | AutaConfig

Fig. 28 System settings, FOB 10 / FOB-M

Q Interrupt mode of FOB-PC| boards

* Board ID: Display of installed iba PCl cards, auto-detected
» Interrupt mode: to be selected; Master mode internal / external or slave
mode; only one iba PCl-card must set to "Master mode"!
» Used by ibalLogic: yes/ no, please check the box if the related card should
be used exclusively by ibaLogic (and not by ibaPDA or other programs).
Mouseclick on the "Configuration"-buttons opens the dialog windows which can
also be reached via menu “>File --PC/ Configuration, see also chapters 2.6.1
and2.6.2.

@ Altered settings will only be applied after clicking on the button "Save configuration".

Remark:

The checkboxes "As FOB-M" in former versions (< 3.88) have been removed. The
settings for a fast data acquisition (sample rate 25 kHz) with Padu8 M, Padu8 ICP
or Padu16 M and the card runnning in FOB-M mode should be done in the dialog
Configuration FOB/IO (FOB-F PCI settings). Each processor of a FOB 4i PCl-card
can be set to FOB-M mode individually. Thus a mixed operation of FOB-F and
FOB-M mode is possible.

m © iba AG 2009

Manual Page 2-35

2.5.5. Menu >-File >System settings >FOB-TDC / FOB-SD-PCI

Spstem Settings EHE
Fieflective Memory | Other | Parallel | FCMCIAF |
General | FOBAD /FOBM FOBTDC/FOBSDFC | 18 | L&&1%

i~ Interrupt mode of FOB-TDC/FOB-50-PCI B oard:

Used by
Board Id Interupt mode ibalogic

‘FDB-SD-PEI in Slot 8 on Bus 2 IMasler mode / internal

Automatic
r Reconnection

Lef el e
SIS |

Save configuration | Cloze | LutoConfig

Fig. 29 System settings, FOB-TDC / FOB-SD-PCI

Q Interrupt mode of FOB TDC/FOB SD PCl boards:
* Board ID: Display of installed iba PCl cards of this type, auto-detected
» Interrupt mode: to be selected; Master mode internal / external or slave
mode; only one iba PCl-card must set to "Master mode"!
= Used by ibalogic: yes / no, please check the box if the related card should
be used exclusively by ibalLogic (and not by ibaPDA or other programs).

Q Automatic Reconnection

If the target system (Simadyn D/ Simatic TDC) has been shut-off during operation
or is not available due to other reasons the corresponding i/o are blocked because
the related drivers are stopped. The i/o are shown as invalid in the layout if the
option "unavailable signals are invalid" has been set in the dialog > File > System
settings, General (see 2.5.1). Other i/o which are not connected to the missing
system, e.g. from FOB 10 cards, are not affected and will be evaluated.

Selecting this option will urge ibalLogic to establish the communication to the
target system and restart the drivers after the target system has returned (which
is detected by ibaLogic automatically). This procedure takes approximately 5 to
20 seconds. For this time the evaluation of the layout is completely halted, i.e. no
i/o are available. For that reason the selection of this option should be made care-
fully in order to avoid unwanted effects on the process.

Mouseclick on the "Configuration"-button opens the dialog window which can
also be reached via menu “>File --PCl Configuration, see also chapters 2.6.4.

@ Altered settings will only be applied after clicking on the button "Save configuration".

© iba AG 2009 m

Page 2-36 Manual

2.5.6. Menu “>File >System settings >L2B

Sysztem Settings HE
Fieflective Memony | Dther | Parallel | FCMOIAF |
Gereidl | FOB/O/FOEM | FOB-TOC /FOB-SD-PCI L | Lmm
i~ Interupt mode of L2B-PC board:
Used by
Board |4 Interrupt mode: balogic
|LZB-PEI inSlot 13 on Buz 2 ISIave node j ird
| | o
| [
| | -
Save configuration | Cloze | AutaConfig

Fig. 30 System settings, L2B

Q Interrupt mode of L2B-PCl boards:

* Board ID: Display of installed iba PCl cards of this type, auto-detected
» Interrupt mode: to be selected; Master mode internal / external or slave
mode; only one iba PCl-card must set to "Master mode"!
» Used by ibalLogic: yes/ no, please check the box if the related card should
be used exclusively by ibaLogic (and not by ibaPDA or other programs).
Mouseclick on the "Configuration"-button opens the dialog window which can
also be reached via menu “>File -PC| Configuration, see also chapters 2.6.3

@ Altered settings will only be applied after clicking on the button "Save configuration".

m © iba AG 2009

Manual Page 2-37

2.5.7. Menu >-File >System settings >L2B 5136

Spstem Settings HE
Reflective Memory | Other | Parallel | PCMCIAF |
Genersl | FOBAD/FOBM | FOBTDC/FOBSDFCI | 128§
i~ Settings of the L2B-5136-PCl Board:
Used by
Eoard 1d Configuration File ibalogic
\ | [
[| ~lr
\ | =l r
\ I =] el

Save configuration I Cloze | AutnEnnhgl

Fig. 31 System settings, L2B 5136

Q Settings for L2B 5136 boards:

* Board ID: Display of installed iba PCl cards of this type, auto-detected

= Configuration file: Enter path and file name of the configuration file or
browse and select an existing file.

= Used by ibalogic: yes / no, please check the box if the related card should
be used exclusively by ibalLogic (and not by ibaPDA or other programs).

@ Altered settings will only be applied after clicking on the button "Save configuration".

© iba AG 2009 m

Page 2-38 Manual

2.5.8. Menu “>File >System settings >Reflective Memory

Sysztem Settings HE
Gererd | FOBAD/FOEBM | FOBTDC/FOBSDPCI | L8 | LeBs1ss |
Reflective Memory Otbeer | Parallel | PEMCIAF

Configuration of Reflective Memary Board

Used by Enable

Board Id Byte Swap ibalogic ‘Wwinite Limits
|HM-PEI inSlot 0 on Bus 0 I j il -
Access to digital value: “wirite Linnit;
& Free bt sssignment Lower Limit
£ 81bit assignmett Upperlimit [

Save configuration | Cloze AutaConfig

Fig. 32 System settings, Reflective Memory

Q Configuration of the Reflective Memory boards

* Board ID: Display of installed iba PCl cards of this type, auto-detected
» Byte Swap: Activate / inactivate the swap mode; depends on the con-
nected system. To be used, e.g. if the target system requires Big Endian
mode. Choices: No Swap, Byte Swap, Word Swap, Byte and Word Swap
and Swap on Size.
Remark: The new RM-board VMI5565 does not support the swap mode
any more. The boards VMI5576, VMI5579 and VMI5586 still support the
swap mode.
» Used by ibalogic: yes / no, please check the box if the related card should
be used exclusively by ibaLogic (and not by ibaPDA or other programs).
» Activate Writing Limits: Check the box if the writing limits should apply.
» Access to digital values: Select whether the access to digital values should
be performed bitwise or bytewise.
» writing limits: Preset of the lower and upper writing limits; entry is only al-
lowed when "Activate writing limits" is checked.
Mouseclick on the "Configuration RM"-button opens the dialog window which
can also be reached via menu “>File -PC| Configuration, see also chapters 2.6.5

@ Altered settings will only be applied after clicking on the button "Save configuration".

m © iba AG 2009

Manual Page 2-39

2.5.9. Menu >-File >System settings >>PCMCIAF

Sysiem Setlings [21x] System Seltings z]x]
Geneidl | FOBAO/FOBM | FORTDC/FOBSDPOI | 128 | (8513 | Geneidl | FOB/AD/FOBM | FOBTDC/FOBSDPOl | Lz | Lessiss |
Reflective Memony | Other | Parallel FCMCIAF Reflective Memory | Other | Parallel PCMCIAF
FCMEIAF Setting: PCMCIAF settings for kP
Used by ibal ogic: ~ Used by ibalogic .
MEmEmlmeatien 0DCU00 et |
Activate Buffersdbods T Ay
oy 0
Under Windows #P the PCMCLA resources are under control of the PnP Manager
Click 'Dpen Device Manager' to inspect the POMCIA resources.

Savecanfiguation | | Cese | AueConfig | Save corfiguration Chose AuaContig

Fig. 33 System settings, PCMCIAF on Windows NT (left) and XP (right)

a PCMCIAF Setup

By means of the PCMCIA-support ibalLogic can be supplied with input signals
even when running on a notebook computer. The card PCMCIAF from iba (order
no. 1.020) should be used for this purpose. If the PCMCIAF card should be used
please check the box Used by ibaLogic. The incoming signals (max. 64) will be as-
signed to the first two modules of the FOB-F input resources for analog and digi-
tal values.

The basic memory address is automatically set. It may be adjusted during installa-
tion of the card.

The checkbox Activate Buffered Mode should be checked, if sampling rates of in-
coming signals are higher than the task cycle time of the layout in ibaLogic. In
this case the input resources FOB-F Buffered Mode should be used in the layout
(see 5.1.2).

With Windows XP the card management is provided by the device manager in a
more convenient way than with NT.

@ Altered settings will only be applied after clicking on the button "Save configuration".

© iba AG 2009 m

Page 2-40 Manual

2.6 PCI configuration

The menu >File »PCl configuration provides access to the same configuration
dialogs for selected cards like the "Configuration.."-buttons in the dialogs of the
system settings (compare chapters 2.5.2 to 2.5.8).

Progiam Settings... |

Spstem settings..

BCI Canfiguration FOB-I0-PCI Link settings

154 Configuration. .. FOB-M-PCI Link settings

Restart driver LZB-PCI Slave settings
~_. FOB-5D/TDC settings
Reflective Memory Card settings
TCP/IP Out settings

E it

Fig. 34 Menu PCI Configuration

2.6.1. FOB-10-PClI Link settings

FOB-F PCI Setup E3
B FOB-4i PCID Board 0 Tima;ri?ger
ﬁ FOB-H PCIA Receiver format Transmitter format Mode
W FOB-4i FCLZ Link 0 IAutomatic j I\ntegel j ISynchmn 1ms j I Moduls 0.1
ﬁ FOB-H PCIE
Link 1 |Aut0matic j |\nteger j |S_unchmn Imsz j I Moduls 2.3
Link 2 IAutomatic j I\ntegel j ISynchmn 1ms ﬂ ™ Modulz 45
Link 3 IAulUmalic j I\nlegel j ISynchmn 1ms j ™ Moduls 6.7

—— | Depending on the

Ofered Mode [the card type this

Activate programmable Cycle Time [image may show a
variable Interupt Delta Time [~ FOB 10, too.

Cancel |

Fig. 35 FOB-M-PCI Link settings

This dialog shows the configuration of each fiber optical link (0...3) of up to four
FOB-F-cards (e.g. FOB IO or FOB-4i-PCl). After selection by mouseclick in the tree
(left) the configuration can be changed for installed and selected cards. If Fob-M
mode is required due to high sampling rates the Fob-M mode can be activated on
a per-link basis in the selection of receiver and transmitter format.

FOB-4i-X cards and FOB-4o-X cards work only in F-Mode and M-Mode. The X-Mode (32
@ Mbit Telegram) couldn’t be used in ibaLogic-V3.

@ FOB-2i-X cards and FOB-2io-X cards are displayed as FOB-4i cards, but only two links are
available.

m © iba AG 2009

Manual Page 2-41

Receiver format

Data format of incoming signals (via optical link); recommended setting: Auto-
matic (default);

Lirk 3 [EER it

Integer
Real
55 Real
Automatic

FobMMode o

Integer: for data coming from SM64, SM128V, ibaNet750 and Padus

Real: for data coming from SM64, SM128V

S5 Real: for data coming from SM64 in S5 Real-format; the SM64-card must op-
erate in the same mode.

Fob-M Mode: for data coming from Padu8 M, Padu8 ICP or Padu16 M with fast
sample rates up to 25 kHz. When choosing FOB-M mode, the same format for re-
ceiver and transmitter is enforced. Each processor of a FOB 4i PCl-card (=link) can
be set to FOB-M mode individually. Thus a mixed operation of FOB-F and FOB-M
mode is possible.

Q Transmitter format
...as above but for sending data

Q Mode

» Synchron 1 ms: The data are received synchronously to the internal basic
samplingtime (1 ms) from the connected peripheral components. This is the
usual mode for reception of incoming data from FOB-F, FOB IO und FOB 4i
PCl cards.

» Asynchron 1...10 ms: The data are received with a different sample rate than
the basic samplingtime.

7 See also Characteristics of the asynchronous mode, S. 2-42

Q Time Trigger Mask

Release for using programmable sample rates with the related fiber optical port.

This is a precondition for operating in asynchronous mode and thus must be
checked.

Nearby the checkboxes for the time trigger mask, you'll find the corresponding
module numbers as a remark. Each fiber optical link corresponds to two modules,
consisting of 32 analog and 32 digital signals each, i.e. a total of 64 analog and
32 digital signals per link.

Q General

= Activate Buffered Mode: If checked, the received data are buffered and
then provided to the ibalogic layout as amn Array-resource (max. buffer
depth = 256). This feature is only available for the first eight FOB-F-
modules (compare chapters 5.1.2 and 5.2.2).

= Activate programmable Cycle Time: If checked, it is allowed to set the sam-
pletime for a fiber optical port of therelated card in the layout.

» variable Interrupt-Delta-Time: If checked, the time-lapse between two inter-
rupts may vary.

© iba AG 2009 m

Page 2-42 Manual

Altered settings will only be applied after clicking on the button "Save configuration" or re-
@ spectively "Apply" + "Save configuration".

2.6.1.1. Characteristics of the asynchronous mode

The intention of using the asynchronous mode is to adjust the sampletime of the
Padus to the measuring scenario, e.g. for a FFT with as less samples as possible.

The following preconditions are required:

The ralated fiber optical port is set to asynchronous mode.
Option "Activate programmable Cycle Time" is checked.
Option "Variable Interrupt-Delta Time" ist active (checkmark).

The FOB-F-card, whose first Link is running in asynchronous mode must
generate the interrupt for ibalogic.

The interrupt setting for the FOB-F-card is "Master/External".

The fiber optical link is a closed loop (input/output of the card con-
nected to output/input of the signal source).
ibalLogic runs in signal manager mode (“>File >System settings).

If these preconditions have been carried out, the following statement applies:

The physical unit]ms] for samplingtime and task-evaluation interval will be re-
placed by the number of interrupts. As a consequence the time-lapse between
two interrupts and thus between two evaluation intervals is variable.

The value EvalDeltaTime which is given to the task in ibaLogic is adjusted and cor-
responds to the real lapsed time.

m © iba AG 2009

Manual Page 2-43

2.6.2. FOB-M-PCI Link settings

FOB-M Settings K=

Masimal ks [T =] 1.4
Padu number m 1. 96
Scan time |2000-DD 40.0 .. 2000.0 ps
Gain |5-DD 00.E35db

Filter fraquency [200.00 100.0 .. 20000.0 Hz

Lo oove corfiguration i Cancel |

Fig. 36 FOB-M-PCI Link settings

This dialog can be used for setting the default values of the card for operating in
FOB-M mode.

These presets apply generally to all links which are set to FOB-M mode.

Usually, the parameters are adjusted individually for each processor (link) later in
the layout. The settings made in the layout overwrite the default settings.

Altered settings will only be applied after clicking on the button "Save configuration" or re-
@ spectively "Apply" + "Save configuration".

© iba AG 2009 m

Page 2-44 Manual

2.6.3. L2B-PClI Slave settings

L2B PCl Setup B
[=]-E LzB-Poin [Boad 0, Froc &
Frafibus Slave Maode Selection Eiyte Swal
- g& Proc_A MNumber ¥ P
LG FrooB Slave 0 Im = I
Hﬁ L2B-PCIM
: = B
- g& Pros Slave 1 I'I'I = IInputs 57 Integer j I
o 9& Froc_B Slave 2 |12 ﬁ IInputs -57 Integer j I
[_]..ﬁ L2B-PCI2
______ g& Prac_A Slave 3 |13 j IInputs - 57 Integer j o0
. 42% Froc_B
EW LzB-PCIZ
...... ﬁ Froc_A
[42% Froc_B
| Apply values I Cancel |

Fig. 37 L2B-PCl Slave settings

This dialog shows the configuration of up to four L2B-PCl cards, each with two
processors with up to four Profibus-slaves. After selection by mouseclick in the
tree (left) the configuration can be changed for installed and selected cards /
processors.

Not all modes are available with all firmware versions. Also, for older ibalLogic
versions some functions are not available.

Q The default setting of the Profibus-slave numbers should be adjusted with
reference to the Profibus configuration (engineering).

Q The mode for data processing respectively for data type may be set indi-
vidually for each slave. The modes "flatness..." are dedicated to data which
are supplied by Siemens flatness measurement systems. (compare chapter
5.1.5). Moreover, each slave can be deactivated individually, if it's not
needed.

Q The selection of the byte swap option (checkbox) depends on the con-
nected target system.

Altered settings will only be applied after clicking on the button "Save configuration" or re-
@ spectively "Apply" + "Save configuration".

m © iba AG 2009

Manual Page 2-45

2.6.4. FOB-SD / TDC Link settings

FOB-SD/TDC Setup [<]
== o Fopso_po i~ Active Inputs Active Dutputs i~ Communikation
LA, -

I Channel0 ™ Channel 0 BGT Name IPDAI]I]‘I

1: FOBTBCFOBSD_PEI [~ Chanrel 1 ™ Chanrel 1

2 FOBTDC/FOBSD_PCI [~ Channel 2 I™ Channel 2 Link Mame IDPDmA

2 FOBTDC/FOBSD PCI [~ Chanrel 3 ™ Channel 3

- [~ Chanrel 4 ™ Channel 4 Partner Hame IDDSDUB

[~ Chanrel 5 " Channel 5
[~ ChannelB I Channel & Software Yersion IVEUS
[~ Chanrel 7 " Chanrel 7
[~ Chanrel 8 T "
™ Chanrel 9 [eats
[~ Channel 10 Processor |15 _,::'
I~ Channel 11
I” Channel 12 syne 15 =
I” Channel 13
I” Channel 14
[~ Channel 15 Read friom Eardl
[~ Technosting

Fig. 38 FOB-SD / TDC link settings

This dialog shows the configuration of a FOB-SD or FOB TDC card. The configura-
tion settings of the card may be changed.

Q Active Inputs

One or more out of 16 input channels supposed to be used for data transfer can
be activated by checkmarks in the boxes (0...15). One channel x corresponds to
one FOB SD/TDC - Simadyn Lite module x in the resource area of ibaLogic (analog
+ digital, x = 0..15).

Please note, that for each selected input channel a transmission telegram
MxPDADAT (x = 0 .. 9,A .. F) must be provided in Simadyn D, resp. in Simatic
TDC.

Q Active Outputs

One or more out of eight input channels supposed to be used for data transfer
can be activated by checkmarks in the boxes (0...7). One channel x corresponds to
one FOB SD/TDC - Simadyn Lite module x in the resource area of ibaLogic (analog
+ digital, x = 0..7).

Please note, that for each selected output channel a reception telegram
PDAMXDAT (x = 0...7) must be provided in Simadyn D, resp. in Simatic TDC.

I..l Because the communication principle of ibaLogic in this case is very similar to the commu-
N\ nication between Simadyn D and ibaPDA, you'll find further information in the design

guidelines for ibaPDA, sw_man_ibaPDA-SD_Project... resp. sw_man_ibaPDA-
TDC_Project..., which are available for download on our website.

Q BGT Name

This is the local PC-system name. In terms of SD or TDC it correponds to the name
of the SD /TDC subrack. Changing the default setting "PDA001" is not necessary.

Q Link Name

This entry is the unique name of the connection between the FOB SD/TDC-card
and the target interface (CS14 board / GDM). This setting has to be changed if
the communication partner is connected to othe ibalLogic or ibaPDA systems. If
the name is not unique the error message =0x6AA0 will be displayed.

© iba AG 2009 m

Page 2-46 Manual

Q Partner Name

This entry is the name of the connected interface board (CS14- or GDM-
processor). It must be entered here! You can find the name in the engineering
documentation of SD resp. TDC or by using the BGT diagnostics in ibaDiag. If
name is not correct the error message =0x6AA6 will be displayed

I..I You'll find further information concerning this topic in our manual about ibaDiag
—~—\ sw_man_ibaDiag_en_A4.pdf, chapter 2.3.11 (or .._LTR.pdf for letter-format).

Q Software Version

This entry shows the version number of the Simadyn D resp. TDC basic software
package. It must be entered here! You can find the name in the engineering
documentation of SD resp. TDC or by using the BGT diagnostics in ibaDiag. If
name is not correct the error message =0x6AB3 will be displayed.

I..l You'll find further information concerning this topic in our manual about ibaDiag
)\ sw_man_ibaDia g_en_A4.pdf, chapter 2.3.11 (or .._LTR.pdf for letter-format).

Q Timeouts

These entries show the waiting time for the acknowledgements of commands to
the FOB-SD/TDC card. Usually, the default setting "15" must not be changed.

Q Button: Read from card

By pressing this button the data which are required for establishing a logical con-
nection, i.e. BGT-Name, Link Name, Partner Name and Software Version, will be
loaded from the Simadyn D resp. TDC system and entered in the corresponding
fields, provided the physical connection is ok.

Q Automatic Reconnection

If this box is checked off the data which are required for establishing a logical
connection, i.e. BGT-Name, Link Name, Partner Name and Software Version, will
be loaded from the Simadyn D resp. TDC system with every driver restart and en-
tered in the corresponding fields, provided the physical connection is ok.

This option may be used for automatically reestablishing a connection when a
link got lost.

The automatic reconnection should be handeled with care!

Since it takes approximately 5 seconds to reestablish a connection there might be an
interference with a proper execution of the ibalogic layout, because during this time
the evaluation of the ibalLogic layout is halted.

Make sure, that the process or machinery which is to be controlled by ibalLogic is in save
condition when activating this option.

Altered settings will only be applied after clicking on the button "Save configuration" or re-
@ spectively "Apply" + "Save configuration".

m © iba AG 2009

Manual Page 2-47

2.6.5. Reflective Memory Card settings

Reflective Memory Configuration [x|
|_—‘_|D In Signal Name Offzet Bit Activated Description
=@ 5‘;'”9 (Fizal) Rk 40T 00700 00 7| F [RMINMOAna 01 il
= Moduler RibM1402 0w 04 0 | W [RMANMOAe 01
[Module2 RMM1A03 00108 0 =] & [RMIN MO &na 02
Hz Module3 RMb1A04 001 0c 0 | & [RMINMOARa 03
Moduled —
[thodutes RMb1405 00110 00 7] & [RMIN MO &na. 04
[Modules RMM1A0E 00114 00 =] = [RMINMOAna 05
Ellg Medule? FitM1407 w118 R N i G
Modules —
[Moules RMM1A08 0:011c 00 | M| [RMINMOARe 07
[Mosuletn RMb1409 00120 00 7] & [RMNMO&na 08
[Medulett FiMM1410 00124 00 =] = [RMINMOAna 03
::E e RMMIATT [oa0izs 0 | W [RMINMO&ns 10
[Moculera Rib1412 00120 0 7] & [RMINMO&na 17
{3 Module1s RMM1413 00130 0 =] = [RMINMOAna 12
Bg Module1d RMb1414 00134 00 | & [RMINMOAna 13
todulel? —
[Modulets RMb1415 0x0138 7] = [RMINMODA&na 14
[Modulets RMM1416 0:013c 0 =] & [RMINMO&na 15
Ell::: Madulezd Fkd1417 Tl 411 i | & [RMAN MO ARs 1R
Module21 —
s Mosulez2 Rb1418 00144 0 7] & [RMINMO&na 17
[Modul=23 RMb1419 00148 0 | & [RMINMDAna 18
Ellg Medule2d FMM1420 Tl 4 o =l & |RMAN MO ARa 13
Module2s —
= Mosulazs RMb1421 00150 0 =] & [RMINMO&na 20
[Modulaz7 RMb1422 0154 =] = [RMIN MO Ans 21
[Module2s RMM1423 050158 00 F| & [PMINMO AR 22
D:; tModule2d —
5 Mosuleso Rib1424 0:015¢c 00 =] = [RMINMOAna 23
[Modulezt RMb1425 00160 00 7] & [RMN MO &na. 24
(-] Analog (Integen) RMb1426 00164 00 | M| [RMINMOAne 25
! S'?t["g""' RbM1427 Dx0163 0 | & [FMINMOZna 26
507 ou il
03 Analog (Reab Rb1428 0:016c 00 =] = [RMINMODAna 27
(-] Analog Ontegen) Fibhd1423 00170 00 7] & [RMN MO &na 28
- pigita RMM1430 0401174 00 =] & [RMINMOD&na 29
RMb1431 00178 00 7] = [RMN MO &na 30
Ribh1432 0+ 7c 00] W [RMAN MO Ans, 31 =l
Activate complete module | Deactivate complete modulel Save configuration file I Lancel |

Fig. 39 Reflective Memory card settings

The definition of addresses and symbolic names for input and output variables
which are exchanged via Reflective Memory with other systems should be done in
this dialog window. The corresponding input and output resources are available
in ibaLogic (32 modules with 32 analog values each, REAL or Integer, and 32
modules with 32 digital signals each). The related modules are shown in the left
part of the dialog window.

The settings depend considerably on the connected system. The addresses and
symbolic names shown as default settings in the dialog window are presets for
example and subject to change if necessary.

Q Signal Name

This column shows the signal names which are used internally by ibaLogic and
which cannot be changed. These names are also shown in the tooltip when the
mouse points on the connection point of the input or output in the layout.

Q Offset

The offset or memory address of each signal in the reflective memory should be
entered in this column. The default settings show typical entries for example:

Real signals from 0x0100 in 4-byte-steps with module distance of 0x0100,
integer signals from 0x0180 in 2-byte-steps with module distance of 0x0200 and
digital signals from 0x0080 in one doubleword (= 32 bit) with module distance
0x0002.

© iba AG 2009 m

Page 2-48 Manual

In case of a point-to-point connection between ibaLogic and another system, i.e.
if the data can be mapped in a memory block, a similar addressing is very likely.
But Reflective Memory (RM) allows also the linking of several systems in a ring
topology for data exchange which is not related to ibaLogic as well. In such a
case there is a free choice of addresses, i.e. the addressing may be adjusted to the
RM-configuration.

There is no rigid assignment between RM-address and ibalLogic variable. It is not
necessary to arrange the data in the iba module structure.

Q Bit

These fields are activated only if a module for digital signals is selected. Digital
signals should be packed in double words (DWORD, 32 bit) for ibaLogic. A single
signal in a double word is addressed by the bit number. The bit addressing may
be adjusted to the configuration-related requirements as well.

Q Activated

These checkboxes may be used in order to inactivate single analog or digital sig-
nals of a module if they are not needed in ibaLogic or if the must not be used by
ibalLogic.

Q Description

The description is a simple customized text entry which will be used as signal-
name in the layout, resp. the function block diagram. The description will appear
as signalname in the input / output margins of the layout and in the input/ out-
put resource trees as well.

Q Buttons ,Activate / Deactivate complete module”
These buttons activate resp. deactivate all signals of a selected module.

Altered settings will only be applied after clicking on the button "Save configuration" or re-
@ spectively "Apply" + "Save configuration".

In case you have to define many signals it may be a painstaking task to enter all signals in
this dialog window. There is a way to ease your work:

The RM-settings are stored in an ASClI-file dynconf.cfg in the path ...\configuration in the
program directory of ibaLogic.

This is a csv-file which may be opened with MS Excel (e.g. rename the file before to .csv).
The settings can be processed more efficiently by using the means of MS Excel.

Finally, save the file again under its orinal name.
? See also 5.1.6

m © iba AG 2009

Manual Page 2-49

2.6.6. TCP/IP Out settings

TCPIP Einztellungen E
5. g2 PDA -
48 Connector 0 2
g T star 1
e bonnacter IPAddess | 10 - 0 - 2 193
€ Connector 2
- Connector 3 Part |4UDDD

-2 Connectar 4

g€ Connector 5 FD& module number IU j:

el Connectar
Infachannel [
-4 Connectar 7

€< Connector 8 Infachannel Port |4UUUT
el Connector @
e Connector 10 Apply to following moduls
-4 Connectar 11
-4 Connectar 12
& Connector 12
- Connector 14
<€ Connector 15

€< TechnoSting | Save configuration I Cancel

L

Fig. 40 TCP/IP Out settings

This dialog serves for setting up the usage of output signals via a TCP/IP connec-
tion.

In compliance with the TCP/IP OUT output resources (refer to section 5.2.5) up to
16 modules with 32 analog and 32 digital signals each may be sent towards an
ibaPDA-system. Furthermore, there are four string variables availble for transmit-
ting Technostring outputs. In order to make use of these output resources the
TCP/IP channels have to be configured and activated. 16 channels (connector
0...15) which can be configured and activated individually are provided for 16
modules of output signals towards an ibaPDA-system. Thus, connections of un-
used modules may be deactivated or connections may be assigned to different
target ibaPDA-systems using different IP-addresses.

The data to be transmitted to an ibaPDA-system may be assigned on base of an
output module to any module in ibaPDA.

Q Modul number

= Aktivated: The related and selected connection will be activated only if this
box is ticked off.

= |P-Address: IP address of the receiver; this may be also the local IP address
if ibaLogic and ibaPDA are running on the same PC.

= Port: Hier muss die gleiche Portnummer eingetragen werden, die im ibaP-
DA-System in den Systemeinstellungen eingetragen ist.

= PDA module number: The number of the module in ibaPDA where the
data are supposed to be assigned to should be entered here.

» Infochannel: no function; in preparation for transmission of signal names

= Infochanne Port: no function

» Button ,Apply to following modules”: Using this button will copy the set-
tings of the currently selected module to the modules beneath in the list.

Altered settings will only be applied after clicking on the button "Save configuration" or re-
@ spectively "Apply" + "Save configuration".

For using ibalogic outputs in ibaPDA via TCP/IP the following conditions apply:
a) the option "TCPIP ibalogic to PDA" must be released in the dongle,
b) the port number must be entered in the system settings in ibaPDA,
¢) the moduletyp "IbaLogic" must be selected in the module configuration in ibaPDA.

© iba AG 2009 m

Manual Page 3-1

3 Working with ibalLogic

ibaLogic provides a variety of functions and there are many ways to find a solu-
tion for a problem. Before starting the engineering process it is important that
there is a good comprehension of the structure and the philosophy of ibalLogic,
which is described in the following.

3.1 System limits and boundary conditions

It was our explicit intention not restrain the capabilities of ibaLogic, concerning
number of flags, 1/Os etc., by build-in limits like it is done for many other control
systems on the market due to technical or marketing reasons. On one hand this
freedom is an advantage for the customer, on the other hand it might be mis-
taken for a "never-ending pot".

On principle, every system has its limits in terms of processing capacity, i.e. only a
limited number of operations in a time interval can be processed. In case of an
open system like ibaLogic these limits are determined by parameters such as CPU
power, memory size or other hardware-dependent factors of the environment for
ibaLogic. When creating a control application the knowledge of the interaction
between the different factors is important in order to avoid an overload of the
system by using its powers in all directions to their full extend.

Basically, a few restrictions apply:
The display "Evaluation [%]" should not exceed 100 %, (i.e. 1.0)!

The bigger the program the more likely are delays in compiling when mak-
ing online modifications (without HotSwap)!

In the latter case it depends on the kind of modification. If a modification affects
only one task it may work without noticeable delay (tens of ms). But if more tasks
are concerned, e.g. when modifying an OPC, it may occur that the entire project
(layout) must be compiled, linked an located. If a layout contains around 350
pages, this operation may take one or two seconds (on a double Pentium 3 with
1 GHz, plenty of RAM and "Eval %" almost 100%). And this could cause a real bad
behaviour of the controlled machinery!

the online process may be affected and halted for some seconds when online modifications

ii Due to extended compilation time and depending on system load and kind of modification
are performed. The system outputs won't be refreshed in this time!

In this case there may be hazard for life or machinery!

We recommend to use the Hot-Swap method when changing the layout during operation.

Always secure the layout against unauthorized or unintended modification by using the
password protection and lock function of ibaLogic.

Depending on the layout size the creation of a Hot-Swap layer might take some
tens of seconds (in the above mentioned example around 20 - 30 s for each
switch-over). But the safety benefit is worth it.

© iba AG 2009 m

Page 3-2 Manual

3.2 Important terms and functions

The functionality of the application is described by functions, function blocks,
macros, connection lines and comments in ibaLogic. The container of all the tasks
is called "project".

It starts with the creation of a new project. The project contains an application-
dependent number of tasks which run with on a particular time base each (cycle
time as a multiple of the basic ibaLogic samplingtime, respectively the FOB-board
samplingtime). The contents of a project is to be stored as a file with .lyt exten-
sion. A project is always additionally stored as a "Structured Text"-ASCIl formatted
file according to IEC1131-3.

One of the most innovativ features of ibaLogic is the capability to switch over to
offline evaluation mode immediately without waiting when working on the
graphical programming for test and diagnostics purposes. Thus, the function of a
program or the behaviour of function blocks may be tested quick and easy.

In order to switch on the evaluation mode click the | * button in the tool bar.

When testing complex interlockings the evaluation of a single step (cycle) or of a
specified number of steps is possible (single step / multiple step). In evaluation
mode the outputs are not active but inputs are read.

The activation of a project (layout) and the output of variables to a connected
process are done in online mode. In order to switch over in the online mode click
the button "Activate / deactivate Online Evaluation "% in the tool bar. The back-
ground color of the screen switches from grey to purple when working in online
mode.

activated according to the engineered application. This may cause unintended

ﬁ When switching over from evaluation mode to online mode all the outputs are
reactions of a connected machinery.

Make sure to avoid danger to life due to sudden moves of a machinery or
other related effects!

Furthermore, we recommend to perform only little, easy-to-handle
modifications in closed-loop controls because the cyclic processing may be
affected as well.

In order to prevent unintended reactions of the process it is strongly recom-
mended to use a Hot-Swap layer for working. With a Hot-Swap layer it's possible
to make a copy of a task running in online mode, make the changes in the copy
and switch back to normal operation afterwards, by applying the changes.

To create a Hot-Swap layer please follow these steps:

Switch to online mode by clicking "Activate Online Evaluation" %
Lock the current online layer by clicking "Lock Online Layer" (key)@

Then create a Hot-Swap layer by clicking "Create hot swap layer" - o)
This command causes the system to create a copy of the contents of the
online layer without quitting the online mode. This copied hot-swap
layer may now be modified and testet in evaluation mode without af-
fecting the process. While working on the hot-swap layer the original
online layer is executed in the background with highest priority.

m © iba AG 2009

Manual Page 3-3

Switch-over to the modified project by clicking menu > Hot Swap <>
Apply to Online Layer

The modified hot-swap layer will be switched immediately to online
mode during operation (without loss of control cycles).

/_‘ji Although ibaLogic is capable of switching over smoothly and without loss of control cycles
there is always a risk of hot-swap switching due to engineering errors in the application
program or wrong parameters. It is always recommended to switch over when the process

or machinery is in safe condition.

3.3 Which tasks should run how fast — and what does it mean?

The essential decision in a project is the one about the project structure. Usually,
a project is devided into separate tasks which could be completely independant
from each other or which could differ from each other in terms of dynamic be-
haviour. It's clear, that a roomtemperature control can work with a cycle time of 1
s when the cycle time of a hydraulic gauge control in a cold rolling mill must not
exceed some tens of milliseconds.

Thus, time is an essential parameter to be considered when dividing a project into
different tasks. The shortest cycle time in ibalLogic is 1 ms.

3.4 Relation between task cycle, processing time and evaluation%

iba guarantees that the tasks can be started in intervals of 1 ms but some condi-
tions apply.

According to the definition a task in ibalogic (Version 3.xx) is uninterruptable.
This has an impact on the cycle time.

Example: Two tasks are defined. TaskO with 5 ms cycle time and Task1 with 100
ms. For the evaluation TaskO needs 2 ms and Task1 needs 8 ms. These values for
the evaluation time can be ascertained with the evaluation statistics. Task1 —
which is uninterruptable — runs longer than the cycle time for TaskO (5 ms) re-
quires. In this case the display of Evaluation [%] in the bottom bar of the ibaLogic
screen shows a value over 100 % because it shows the relation between the
longest evaluation time and the shortest cycle time. For the evaluation of the
function blocks, this is not a problem because the function blocks are designed
time-relativ. Time-relativ means, that each function block checks how much time
has lapsed since it was started (keep that in mind when creating your own func-
tion blocks with time-depending elements).

Of course, the obstruction of the (shorter) task could cause some problems, such
as missing an impuls with a length of 5 ms which is created by switching-on in
one and switching-off in the next cycle. But in order to avoid such problems it is
recommended to use special pulse-generating functions, like with Padu8 O.

Having realized these facts it will lead to the following rule of thumb:

The evaluation [%] should never exceed 100%, else obstructions or other side

W effects are inevitable!

© iba AG 2009 m

Page 3-4 Manual

In the ideal case (not a must-be) the total of the evaluation times of all tasks
should be less than the shortest cycle time.

Else, obstructions might occur due to interference of tasks and evaluation times.

The current evaluation times of the tasks can be ascertained by use of the evalua-
tion statistic under menu > View < Evaluation Statistic.

Evalutation Statistic E3
Tazk Marme Evaluation Time per cycle [ms]
i cunment INER] Tirne since ztart
3 T0 General 0.1 0.1 0z 20:900ms -

T1_Inputs 01 01 0z 20z980ms

T2_HydSeq 01 01 0.1 20=950ms

T3 P1Readout no 01 01 20=800ms

Td_Outputs 0z 04 IRS] 20z980ms

Total 0.5 0.8 1.1

Rezet |

Fig. 41 Evaluation statistic

3.4.1. Order of task processing

Due to certain conditions it might be necessary that the order of task processing

should be changed. Usually the tasks are processed in the order from left to right.
To change the order follow these steps:

Right mouseclick on tab of the task which should be shifted (e.g. task
"nContr_1"). Then mouseclick on "Change Order" in the pop-up menu.

1| |
& int1: 50ms [l nContr_1: 50ms I

Edit

F

nContr_1

LConfigure

Then left mouseclick on the tab at the target position for the task, e.g.
"in11"; cursor shape altered.

1| |
] ind E‘ngs Bl ncentr_1: 50ms |

ncantr_1

Klick left mousekey again. Task "nContr_1" is now on the left side of Task
"in11" and will be processed before.

1
4| |
Bl ncentr_1: 50ms | [l in11: 50ms |

nContr_1

m © iba AG 2009

Manual

3.5 The I/O system of ibaLogic

Generally, the iba 1/0 system receives the data independently from the PC-
processing. (Of course, an application is required for outputs). This happens usu-
ally with a scan rate of 1 ms, i.e. signals will be transferred even if no PC-

Table 4

application is running.

Exception: When using connections to devices which need bidirectional commu-
nication, such as Padu8 M, a running ibalLogic application is required.

The following table gives an overview of the I/O components of ibaLogic and
their related PC-connection boards.

Peripheral device
Padus, -16, -32

PC-connection board
FOB 4i PCI, FOB 10

Inputs (I) and/or outputs (O)
[

Padu8 M, -ICP FOB 4i + FOB 40 PCI, FOB IO | (outputs for configuration only)
Padu8 O FOB 40 PCI, FOB IO 0]
ibaNet 750 FOB 4i + FOB 40 PCl, FOB IO 1/0
SM 64 10 FOB 4i + FOB 40 PCl, FOB IO /0
SM 128 V FOB 4i + FOB 40 PCl, FOB 10 1/0
CS12/14/16 FOB SD PCI /0
(Simadyn D)

SM64-SD16 FOB 4i + FOB 40 PCl, FOB 10 /0
Simadyn D (16 Bit)

Simatic TDC FOB TDC PCl /0
Simatic S5, MMC FOB 4i + FOB 40 PCl, FOB IO 1/0
Simatic S7, Profibus L2B x/8 PCl, DPM64+FOB /0

1/0O components

© iba AG 2009

Page 3-6 Manual

3.5.1. Identification and naming of I/O resources

There are several ways to describe resources and I/O signals in ibaLogic. Generally,
the name of a signal consists of up to 32 ASCII characters, including special char-
acters and blanks.

Q The resources can be renamed in the tree structur in the left part of the
screen (resource area) by two clicks on the signal name or in the resources
margins in the program area after it was placed there by doubleclick on its
name. If a resource has been renamed, the new name will appear every-
where the resource is used in the program.

Qa More than one resources can be exported as a group in a CSV-file. Right
mouseclick on a resource in the group, choose Export, click OK on question
e.g. Export description for resource tree Analog (Real)?, give a filename and
store. The CSV-file can be edited with an usual ASCII editor or other soft-
ware, e.g. MS Excel. If the modified CSV-file has been restored, it can be
imported by ibalogic, using the menu > View > Load resource descrip-
tions... Either signals and signal groups (module names) can be renamed.
This function is very helpful if many signals should be renamed.

Please notice that the edited file is stored in the same directory as the source
file, particularly when working with MS Excel. The default-directory for the CSV-
files in ibaLogic is ...\ibaLogic\configuration.

a By using menu > View % Equalize resource descriptions the resource
names can be transferred from the project to the resource tree or v.v. This
function is useful if project parts of different engineers have to be merged
together or if standard projects have to be adjusted to different 1/O sys-
tems.

Remark: The link is always the internal variable name in ibaLogic.

Q Anl/O-signal which has been placed in the project, i.e. in the function block
diagram can be renamed individually by a doubleclick on the signal. As a
consequence, one I/O-signal may have different names in different tasks!

All individual name modifications will be reset if an equalization from tree to
@ project is performed again.

m © iba AG 2009

Manual Page 3-7

3.6 Modes of operation of ibaLogic

ibaLogic offers a variety of operating modes in order to match the needs of dif-
ferent applications. Because ibaLogic may be used as a soft-PLC but as a signal
manager, a signal processor or a simulation tool as well, there are several modes
of operation.

3.6.1. Signal Manager

The Signal Manager Mode ensures that ibaLogic won't miss any incoming sample
even if single tasks have been obstructed, i.e. "Evaluation [%]:" has been > 100 %.
The sequence control system of ibalLogic ensures that the data are available
equadistant in the selected sampling cycle. In case of task obstruction cyles are
even made up for the lost time. In the worst case it could occur that ibalLogic
evaluates only "old" values. But it's always ensured that e.g. a FFT analysis can rely
on equadistant and correct values.

Output values will be written by each task at the end of its cycle if output re-
sources are connected in the function block diagram.

3.6.2. Soft-PLC

The Soft-PLC Mode which is suited for control and regulation tasks ensures that
only the freshest signal values are processed. Unlike in the signal manager mode
it doesn't matter whether samples get lost or not. On the contrary, it is intended
to process only the freshest data, i.e. data from the last I/O transfer cycle.

The first task of a new cycle samples the input resources. The "aging" of the re-
sources is determined by the basic sampling cycle time which was set in the
hardware settings. If this sampling cycle time is set to e.g. 10 ms and the first
task has a cycle time of 50 ms, the first task can always process input data which
are not older than 10 ms. But they may be younger.

Output values will be written by each task at the end of its cycle if output re-
sources are connected in the function block diagram.

3.6.3. Turbo Mode

The Turbo mode should be activated when using a PC with double-processor. The
performance and the reliability can be improved in this case because one proces-
sor works only on the application program (runtime) whilst the other cares about
administrative tasks related to the operating system (Windows). Particularly when
working in soft-PLC mode on control and regulation this option is highly recom-
mended.

3.6.4. Playback
The playback mode is a very useful feature for the simulation of processes.

In playback mode a data file which had been recorded with an iba online aquisi-
tion program such as ibaPDA, ibaQDR or ibaScope, may be replayed like a tape
recording and thus be used as a source of input signals. The special quality is the
fact that real data of a plant or a process are used for simulation and testing,
reaching a higher physical fidelity than by process modeling. Especially for re-
vamp projects this is an interesting point.

© iba AG 2009 m

Page 3-8 Manual

3.6.4.1. Using the playback function

The precondition for using the playback function is the activation
(checkbox) of the "Playback mode" in the menu “>File >System settings
>General (refer to chapter 2.5.1)

Furthermore one should decide whether to use hardware 1/0Os or not
together with the playback operation (...>System settings “>Other, re-
fer to chapter 2.5.2)

For the configuration of the playback function use the menu “>File
>Program settings “>Playback (refer to chapter 2.4.4). If a valid data file
is available in the specified folder, the essential data like starttime, sam-
pletime and number of frames will be displayed in the dialog window.

If a certain time range in the data file isn't of interest yet, disable the
manual entries of start- and endtime. Select replay mode and repeat
mode.

Now it's time for the module assignment. The recorded signals which
are identified by module- and channel-IDs should be assigned to the in-
put resources of ibalLogic.

3.6.4.2. Module assignment for playback

A mouseclick on the button "Module assignment >>"in the playback dialog win-
dow opens the following dialog:

Playback module assignment

dat file module input resource
Module_name_0 : Hydr. Adjustmen [not used
htodule_name_1 : Shear/ RSF i 57 Fab-F ¢ 10 In
hodule_name_2 : Standz 1-7 a 1 L2B In
Module_name_3 : 1BA-Logic B-HB Playback In
Module_name_4: Shear

I E

Scaled / Raw Yalue selection Datatype selection for inputs

™ always use raw values " always Feal input resources

& always use scaled values © always Integer input resources
T Back % automatic [dat File moduls tpe]

Fig. 42 Playback module assignment

The left part of the window shows the modules as they are stored in the data file
and as they had been defined in the acquisition system respectively. The module
names are displayed but the names of the signals can not been seen.

The right part of the window shows the input resources which may be used for
playback operation. These are resources of the types FOB-F/FOB IO In, L2B In and
Playback only.

m © iba AG 2009

Manual Page 3-9

The assignment concerns modules only (32 analog + 32 digital signals each) and
no single signals:

First select a module of the datafile in the left field by mouseclick.

Then open the tree in the right field for the ibaLogic resources you want
to use for playback by clicking on the little "+" and check the module
you want to assign to the selected data file module.
Example: All the signals of the data file module no. 0 should be as-
signed to the ibaLogic module 0 of the FOB-F input resources.

dat file module input resource
Module_name_ 0O Hydr Adjustmen
Module_name_1: Shearf RSF £ 5°
Module_name_2 : Stands 1-7 a 1

Module_name_3 : 1BA-Logic
Module_name_4 : Shear

The assignment of data file modules to FOB-F or L2B input modules should be

@ done only if the playback operation "without HW 1/O" is selected in the system
settings (menu SFile >System settings <>Other, Playback settings), otherwise the
hardware input signals might be overwritten by the datafile signals. If either
hardware input signals and data file signals should be used in playback operation
simultaneously (mixed operation) it is recommended to assign the data file
modules to the Playbackin modules.

The numbers of assigned modules must not be equal. It is also possible
to assign a data file module 1 to an ibaLogic input module 5, for exam-

ple.
Playback module azzsignment

dat file module input resource
Module_name_0 : Hydr. Adjustmen [not used
Module_name_1: Shear/RSF /5’ EI Fob-F /10 In
Module_name_ 2 : Stands1-7 a 1 Module O
Module_name_3 : IBA-Logic Module 1
Module_name_4: Shear Module 2
hodule 3

|+

After completion of the module assignment the kind of values and the
datatype of the inputs may be selected.

= always use raw values: ibalLogic takes the signal values as they are stored in
the data file. This option will prevent another scaling in ibaLogic of the sig-
nals which had been already scaled in ibaPDA or are available in physical
units.

» always use scaled values: ibaLogic takes the signal values from the data file
and scales them using the "minscale" and "maxscale" information which is
stored in the data file with each signal as well.

= always Real input resources: All analog input resources will be evaluated as
of datatype REAL.

» always Integer input resources: All analog input resources will be evaluated
as of datatype INTEGER.

= automatic: The input resources will be evaluated according to the datatype
stored in the data file.

© iba AG 2009 m

Page 3-10 Manual

These five settings may be used in combination, but just a few make sense:

Datatype in always raw always always always always
data file values scaled values Real Integer automatic
INT16] [

INT16 o ®
INT16 ® o

REAL [] ([

@® = combinations that make sense

The playback operation will be started finally by activating the evaluation mode,
or the online mode, respectively.

l *.-:' © iba AG 2009

Manual Page 3-11

3.7 Fault management

3.7.1. Zeros on broken links

The activation of this option causes a reset of all input signal values of a module
to zero (0) in case of a communication breakdown between an FOB-F / FOB 4i
board and the peripheral devices. The advantage is to set a defined and safe state
of the input side in case of a malfunction. If this option is not active in case of a
fault the latter input values will remain.

3.7.2. Unavailable signals are invalid

Signals are unavailable when the related PC-board which the input signals are
assigned to is not there or not working. If this option is selected, the unavailable
signals will be marked as "invalid" in the ibaLogic layout (see below).

If a PC-board is installed and working, then the assigned signals are considered as
available.

Disconnecting the fiber optical cable or switching off a peripheral device, e.g. a Padu, will
@ not cause the system to declare the signals as "unavailable"!

Signals will be marked as "invalid" in the layout by a red frame. Because the status
"invalid" of a signal or variable can be passed on, also the variables which derive
from computations or interlockings with invalid variables will be marked as inva-
lid too.

© iba AG 2009 m

Page 3-12 Manual

3.8 ibalLogic handling

3.8.1. Drag & drop

The handling of ibaLogic is done usually by simple drag & drop methods like in
many other Windows NT® applications. I/O-signals or function blocks in the re-
source area can be selected by a left mouseclick (hold) and "dragged" into the re-
quired area, e.g. input signal margin, program area or output signal margin.

3 3.8.2. Right mousebutton

Using the right mousebutton anywhere in the program area or in the in-
put/output signal margins will open a window with the "Edit"-menu functions as
described in chapter 2.3.2.

Using the right mouse button on an input or output signal in the resource area
will offer opportunity for resource group export as described in chapter 3.5.1.

Using the right mouse button on a tab in the task selection bar will open a menu
for task settings as desribed in chapter 3.4.1. and 3.8.3.

3.8.3. Adjust the size of the program area of a task

The initial size of a task's program area is one page. If this is not enough space for
an application, the size can be adjusted individually for each task. There are two
ways to change the size or to add more pages, respectively:

Place the cursor on the lowest or on the far right borderline (cursor shape
switches to [, resp. to <), press the left mouse button and drag the bor-
der slightly down, resp. to the right and a new page will be added below,
resp. on the right side.

Another way is to use the menu < Edit > Task > Configure Task..., in or-
der to open the window "Task Settings" where the number of pages in
horizontal and vertical direction can be adjusted, in the example below a
total of 10 pages.

- Project :
TO_General Description Hypdraulic Screws-Down =
T2 HydSeq
T3_P1Readout =
Td_Outputs
— Task
Hame Drescription

T1_Inputs Freparation of process inputs ;I
w
3
Ewaluation [nterval [ms] I

— Murnber of print pages

harizarital |2 wertical
Maove Up tove Down Save I Save & Exit | LCancel |

Fig. 43 Task settings dialog

m © iba AG 2009

Manual Page 3-13

3.9 Selection and connection of function blocks

The engineering of the application is done by use of function blocks. By clicking
on the "Functions"-tab at the bottom in the resource area one switches from the
resources to the function block directory. For the purpose of a better clearity, the
function blocks are subdevided in seven groups.

Basic Functions

Basic FBs

Global Variables
Global FBs and Macros
Global DLLs

Local FBs and Macros

o U0 0 0 0 00

Local DLLs
The function blocks are described in detail in 4".

After selection of the desired function block, e.g. the multiplier "mul", from the
directory "Basic Functions > arithmetic" by use of the left mouse button, just drag
it into the program area and let it drop.

All other function blocks can be placed in the program area in that way.

«+ ibaLogic Yersion 3.87f - =

File Edit Wiew Ewsluate Lapout HotSwsp TechnoShing Hardwaie Help
! . ._.’
g

DSEX & F @G|)« »|T@|OF
[Resources ID Layer Cnmpnnenisl | Report| B
123 Basic Fundtions l—
-] arithmetic
(B ao0s: Function acos
asin : Funetion asin
(]l stan : Function atan
~{F] stan2 : Function atan2
~(E] cos: Function cos
~{F] cosh : Function cosh
exp : Function exp
~{F] fabs : Function fabs
~{F] fmed : Function fmod

In : Funetion In
{E] loa : Functian log muLt
[l =xpt: Function expt o

sin @ Funstion sin -

sinh : Function sinh] =

tan : Function fan

tanh : Function tanh |

~[El sat : Function sqit
~[F] frand : Function frand ,/
abs : absalute dintvalue
-] add : Funetion add
L R LR LA R
~[E] diw : Function div
~[E) med : Function mod
-] type conversion
E-{] string
=
[+

7 bitstring

7] selection

(] comparisan
-] BasicFBs

-] lobal Variables
+{Z] &lobal FBs and Macros

{3 slesalpLLs —
{1 Loeal FBs and Macros _lLI
7 tocarpiie /L] I ’
(i) Input Resourcas Functions (] Outeu 4| & | Taskd): 1ms
Tasko

Fig. 44 Placing a function block in the layout

© iba AG 2009 m

Page 3-14 Manual

3.9.1. Connection lines and branching

ibaLogic provides three types of connections: connection lines, IntraPage connec-
tors and OffTask connectors.

In order to connect one function block with another, just click on the in- or out-
put of the first function block and drag the line to the out- or input of the other
function block.

There are three types of lines which are classified as belonging to different data
types and which are represented in different colors.

Q Binary connections; they show the current logical state of a line, i.e. of the
represented signal:
blue = low / FALSE, red = high / TRUE (in online or evaluation mode)

Q All other datatypes are represented by grey connection lines, i.e. INT, REAL,
LREAL etc.

Q Arrays, resp. vectors, are represented by green lines. Only arrays of the
same lentgh and datatype can be connected with each other. If the size of
an array changes, the connection has to be cut first and reinstalled after.

The drawing of lines is done easily by placing the cursor on the sensitive area of a
function block or an 1/O-resource (cursor shape changes to ¥), press the left
mouse button (hold), drag the cursor over the target connection point and let the
mouse button go. (If a valid connection point is recognized, the cursor shape
switches to "cross-hair sight"). The routing of the line is done automatically.

Starting point of a line Target point of a line
add_1]
add add
] _ .
= = —g RAETTY P— mul_t
. ini
. out [l

If the route of a line shall be changed, this can be done by placing the cursor on a
kink of the line (cursor shape changes to an 4-arrow-cross), pressing the left
mouse button (hold) and drag the line to the new position. If the objects to be
connected are too close to each other the auto-router may create loops or mean-
dering lines. To avoid this, move the blocks more apart.

Change line route Line routing, objects too close Better line rout, objects apart
add_1 add_1 add_1
add add add
—Mint - =in1 i
BT 3y ST t [—in1
[in2 mul_1 Hinz out] e——— i out e
I inz
Tig:'lm Tut mual_1
- ut [T L
i —im Y Dt ¥
—_— In
inZ
Qin Hinz out

m © iba AG 2009

Manual Page 3-15

Line branches are created by drawing backwards from the target point of the
new line to a point on the main line where the branch should be placed. At that
position a (branch-) point appears on the line. This point can be shifted along the
line or be used for change of line routing as well.

Drawing branch line from terminalpoint to main line Shifting the branch point
add_1 add_1
add I'I'ILI|_1 add |TI|.|:_1
mul - mu
ind : Tin1 - ,
) out 7] in1 in? out [PO in1 aut
[inz . Hinz out [| 7 Hinz 5

© iba AG 2009

real_to_bool_1

real_to_bool_1
real_to_bool

S in out [T

To delete a connection, just select the line at its starting- or target point and drag
it away (disconnect it) from the function block somewhere to a free space in the
program area. The related line will disappear.

Branches and kinks of lines can also be fixed in their position by pressing the
right mouse button when the cursor is placed on such a point. A fixed point is
marked by a little cross (X) on the line. To remove a fixed point repeat these
steps. Objects can be moved in the area but the fixed point stays where it is.

ibaLogic checks automatically whether the data types of input and output match.
If not, ibaLogic performs the action which has been defined under menu > File
> Program settings - Conversions. ibalLogic provides "Autorouting", i.e. if a func-
tion block is shifted, all of his connections will be shifted together with it. If
needed, the connection lines can be shifted manually (see above).

Function blocks with untyped input and output connectors (overloadable) will adopt
the data types for the connectors as soon as they are connected with one source or
target object with a declared data type.

The other way round, these function blocks will loose their data type definition as soon
as the last type-defining connection has been cut. At the same time all default values in
these function blocks will get lost, because default values are only permitted when data
types are defined.

Page 3-16 Manual

3.9.2. IntraPage connectors (IPC)

An IntraPage connector (IPC) is a mean to simplify the diagrammatical represen-
tation —it's a replacement for a connection line. The use of IPCs is recommended
if many objects on a page have to be connected or if long connection lines over
several pages are required. The IPC can only connect objects which are located on
the same hierarchical level, e.g. in one task or inside of a macro block. It's not
possible to use IPCs for connections between objects on different levels, e.g. from
the inside of a macro block to a function block outside of the macro in the pro-
gram area.

There are three ways to create an IPC:

Press the ALT key and draw a line from a starting
point to a free space in the program area. The
starting point for a signal source (for a "sending"
IPC) is usually the output of a function block. To
create the counterpart of a "sending" IPC (the
Select Signal] I "receiving" IPC), do it in the same way, starting
giter o at the target connection point (usually an input)
Iy -Ij and drawing the line "backwards" into a blank
- area. See example, left, at oscilloscope-block. If
there are already IPCs in the program a selection
list is displayed when creating a "receiving" IPC
B (e.g.add_1.out and mul_1.out). To connect, just
select the desired IPC source and the connection
is ready.

FOB-F M1 Int. 01 [T}

FOB-F M1 Int. 02 [T}

or2 ...or, by making a connection between two ele-
or ments which are placed on different pages.

in1
S TA_Inputs FFMADO (1) f—] ol

O in2 Connection lines which already exist won't be
split up by dragging the function block over a
___ page border.

FOB-F i1 Dig. 01 3 T4 _Inputz FFM1D01

m © iba AG 2009

Manual Page 3-17

3 a)
FOBCF bt it 01] ...or click on an existing connection line with
‘ e pressed ALT key. The line, resp. the related net-
WG;;; = work will be split up if acknowledged. Note,
M that branched connections will be replaced dif-
mul ferently depending on the place where the IPCis
m defined. If the IPCis defined on a point-to-point
connection or on a branch "behind" (in terms of
1 data flow) the branching point without any fur-
ther branches there will be just one sending and
FOB-F M1 Int. 01 [T TashQL.FFM1I01 iy one receiving IPC (a)
Tas0 FFM1IDT (1) s——nfTin
= j\n; ot
- If the IPC is defined "before" the branching point
o there will be one sending and as many receiving
nz "' IPCs as branches (b).
b)
FOB-F M1 Int. 01 [
add_1
add
Min
Bz 0
mul_1
j::; e
\
FOB-F M1 Int. 01 [l———F Tas0FFmtal__)
dd_1
add
) TasaFRmtat ¢y ——fin t
Tas0 FFM1I01 (1) :lm; ot
mul_1
mul
J Tas) FEM1I01 (2) :,_g::; out]

The name of the IPC is given automatically depending on its origin. It could be
FUNCTIONBLOCK.CONNECTOR or TASKNAME.LABEL. Of course,an IPC can be re-
named by doubleclick on either the source part or the target part. Even the posi-
tion and the size of the IPC can be changed. The size of the IPC can also be preset
in the menu >File --Program settings “>Edit.

The method to delete an IPC is the same as for connection lines by disconnecting
the source, resp. the target point. If a signal source for a "sending" IPC is deleted
the "sending" IPC itself and all corresponding target IPC will get lost as well. Tar-
get IPCs can be deleted individually.

A source-IPC as an object can only be deleted after all of its targets has been de-
leted.

© iba AG 2009 m

Page 3-18 Manual

3.9.3. Off-Task connectors and OPC-connections

OffTask Connectors (OTC) are used for inter-task communication whenever a con-
nection between one or more tasks is required.

Creating an OffTask connector
Place the mouse cursor in blank space of the layout.

Open the menu Edit ->New >0Off-Task Connector (or via context
menu); the dialog as shown beneath will open.

If a new OffTask connector should be created please enter first a name

into the field "Name". ibaLogic will give an error message and reject the
name if a source connector of the same name is already defined.

Some restrictions concerning the name may apply, please refer to chap-
ter 7.2 for more information.

There are two methods to create a target connector:

a) Select the source connector (click) and copy it to the clipboard then
switch over to the task where the target connector should be placed
and paste it. The OffTask connector will be pasted as a target connector
automatically.

b) Switch over to the task where the target connector should be placed
and open the same dialog as described in step 2. In the dialog open the
picklist in the field "Name", the desired source connector and uncheck
the box "Output source".

| Speed_0O1

+* Edit 'Speed_01'

Description: I.-’-‘«ctual totor Speed

Tupe: ILFHE.-’-‘«L vl
Defaul: [0.0
Output source: W

opPC
|7|_ wizible to OPC

I~ | writeable from DPE

Ok | Cancel I

Fig. 45 OffTask connector, dialog

m © iba AG 2009

Manual Page 3-19

Q Settings

= Description: Entry of an explanatory comment. This description will also ap-
pear in the tooltip pop-up when the mouse cursor is placed on the connec-
tor of the OTC.

= Type: Selection of the desired datatype from a picklist.

» Default: Display or entry, respectively, of the default value of the OTC. After
programstart the OTC will use this value. If the option "OPC-writing sets de-
fault values" in the menu “>File >Program settings >Edit has been acti-
vated the default value of the OTC can be overwritten by an OPC-client, e.g.
by a HMI system.

= Qutput Source: Check this box if the OTC is supposed to transmit data.
When defining an input connector (target-OTC) uncheck this option.

Because OffTask connectors are the link to / from an OPC-interface there are two
more options available:

@ = OPC Visible: ...when checked, this option enables the OTC to be visible in
the browser of a connected OPC-client, OPC-icon in dialog changes (see

= left)
= OPC->ijbalogic: ...when checked this option allows an OTC (input/ target-
connector) to be written by an OPC-client.
Thanks to these options OTCs may be used for communication with HMI-systems.
In that case ibalogic is always OPC-server. OTCs, tagged as OPC Visible are visible
in the browser of the OPC-client and can be selected for display.

If OPC->ibalogic is activated a HMI system can send data to ibaLogic. The option
OPC->ibalogic can only be activated for target connectors which have no corre-
sponding source-OTCs.

Inside one task an OTC can only exist one time, i.e. two or more "receiving" OTC
with the same name in the same task are not allowed. (This is done with IPCs.)

"Receiving" OTCs, resp. target-OTCs can exist without a corrsponding source-OTC.
The output of such an OTC is defined by its default value. Furthermore, target-
OTCs without a source-OTC are represented by grey color in the diagram.

Because OTCs are objects they can be placed, deleted and altered in the usual
way.

An OffTask connector has a dark grey color if it is neither declared as an output
@ source nor connected to a data source. Else, it has a light grey color.

© iba AG 2009 m

Page 3-20 Manual

3.9.4. Switch and slider - smart helpers for testing

Switches are used for the online-operation of binary signals. On a right mouse-
click the switch acts like a ON/OFF-switch (1% click = ON, 2" click = OFF). On a
left mouse-click the switch acts like a push-button (ON as long as mouse-button
is down). The operation of analog values is performed by sliders which allow to
alter a value continuously between MIN- and MAX-limits by shifting the slider
knob with the left mouse button. For accurate adjustment (increments of 1/1000)
click shortly in the slider field and then use the cursor keys <— / — on your key-
board. Both switch and slider will stay on their settings even after Stop / Start of
the layout.

(see example below).

Example for use of switches and sliders

B [Yiow Cvabwe HotSwso TechooSiing Hudwwe Heo
DEFEX & L CRRpwww T O

J =

o | RN CEEEN) o R .

37 | [FII

TR

iy . | o
] I astoe =t [nCanis 1 0m
Evaluation (%] [01340 nCaontr_1

Fig. 46 Switch and Slider, sample application

m © iba AG 2009

Manual

Page 3-21

3.10 Combining objects and creating macros

One of the outstanding features of ibalLogic is the easy way to cast a network of
several objects, e.g. function blocks, and their connection lines into a new func-
tion block (macro block). This so called "Bottom-up design" feature is very useful
for improving the clearity of a network or for reusing a complex function several

times.

Puth buitan_UP_RIGHT_FwD [T

Fuih besan_pCni_LITF T _iiows [k

As an example let's take a simple interlocking function as
used for solenoid valve control. In order to avoid the use
of these four function blocks tens of times in a project it
is recommended to build a macro block.

To combine the corresponding function blocks mark
them by clicking the blocks with <SHIFT>-key pressed or

using the multiple block selection mode (button = in
the tool bar).

Pash bsan_iF_RIGHT_Fah b

Fush bthan_DOWN_LEFT_BiHT [[e—

[T
[rebete

To fiock

heow Mulli Charnel Dacllorcops

Sheow Tanget =

The function blocks and their connection lines are se-
lected. Then press <SHIFT> and the right mouse button
to get the edit menu and choose < Block Function -
Implode and confirm the query.

maciol_1
macrod

Fush button_UF_RIGHT_F/D: [}

Push button_DOWN_LEFT_BKWD [T}

FFM1DO1 out [T}

FFM1D02

out1 [T}

A new function block will be created. Doubleclick on the
new block will open it for display and editing of the in-
ner logical structure.

mb_5SalenoidCtrl
macroSalenaidCtrl

] FPE_dir

] PE_dirz

Out_dirl [

Out_dir2 [

In order to make this macro block independent from the
former in- and outputs and to make it available for mul-
tiple use, the name, the in- and outputs should be re-
named.

This has to be done in the dialog which opens under
menu >Edit >Modify *Macro Block (macro block must
be selected)

© iba AG 2009

Page 3-22 Manual

On the other side, there is the possibility to create an empty macro block first and
fill in the functions later (top-down design). For that, use the menu > Edit >
New <> Macro Block and define the input- and output connectors of the macro
block. Only these connectors will be available as inputs and outputs inside the

macro block.
+.* MB_5olenoidControl_1 [_ (O] x|
—General
MHanne: IMB_SnIennidEontrol
Description: I
Nurnber of pages: I'I 3: horizontal |1 3: vertical
Murnber of inputs: |2 3: Murnber of outputs: |2 =
—Inputs
Type . | Name Default value | Description
1 |BOOL - DT_auf FALSE Puzhbuttan up
2 (|BOOL El‘ DT_ab FALSE Puzhbuttan down
—Outputs
Type . | Name Default value | Description
1 |BOOL - A_auf FALSE Output up
2 |BOOL El‘ A_ah FALSE Output down
Check Import. .. Import ASCII.. Enport Font... Cancel

Fig. 47 Creating a macro block

To leave the macro level in the function block diagram click the right mouse but-
ton and choose < Back to parent or press <Ctrl>+ <Backspace>.

l *.-:' © iba AG 2009

Manual Page 3-23

3.11 Creation of a new function block

ibalLogic possesses a large library of ready-to-use function blocks. (See 4).
Though, the major part of problems can be solved with these function blocks it
may be required to have a specialized function block for a particular solution. For
that, ibaLogic offers two easy methods.

3.11.1. Creating a function block without Structured Text (ST)

Example: The new function block should return the difference of two input values
on one hand and their average value on the other hand.

Open the function block window by means of the "Edit-menu" (“Edit >New
>Function block).

v FB_DiffAvg_en_1 |_ O] x|
—General
Narne: IFB_DiffAvg_an
Description: ITh\s function block returns difference and average
Structured text. [~
Mumber of inputs: |2 H: Mumber of outputs: |2 H:
—Input;
Type . | Mame Default value | Description
1 [[LREAL hd i0 0.0 Input value 1
2 |LREAL =] i oo Input valus 2
—Dutput
T . | Mame Default value | Desciiption
< LREAL x| dif ¥ oo Difference i0 -il
avg \ 0o Average of il and i1
\u
—Exprezsion II
I Rt Y |
o=
€y [dif -
2 avg (i0+1)/2.0

Check | Impart... | ImporlASCII...l Expart Font... ok | Cancel I

Fig. 48 Create a new function block

Start by modifying the entries in the following fields: Inputs to “2", Outputs to
"2", Name to “fb_example_1", Description to “This function block returns...".

Notice that each time you add either inputs or outputs, new rows are added ei-
ther on the corresponding yellow or blue space. If you decrease the number of
inputs or outputs, then the rows are deleted after accepting the confirmation dia-
log. For each input click on the field in the column Type and select “Real” from
the list of possible options, take a time to explore all types that you can use in the
future. The default type "LREAL" comes from the system's general settings under
menu SFile SProgram settings SEdit Settings, Preset.

The names of the input and output signals (i0, i1, 00, 01) may be renamed as
well, if required, e.g. "diff" instead of "00" and "avg" instead of "01". To rename the
signals just click in the corresponding fields in the table and overwrite the old
name.

© iba AG 2009 m

Page 3-24 Manual
These are just examples for names to give. You may choose any name for your
project layout. Be careful not to use reserved names as explained in the manual. If
you do so, a warning message will appear and the entry will be rejected.
You can also change the default values, but this doesn’t make sense for our ex-
ample, keep it in mind for you future projects. Notice the buttons on the right
side of the tables in the dialog that enable you to move or modify the selected
row.
Now, you have to program the function block.
Assure that the Structured Text check box is unchecked and click in the row of the
first output in the blue area. In the white "Expressions" area you'll find a table
with all defined outputs. In this table, column "Expressions" you may enter all
statements and expressions for the evaluation of the corresponding outputs. Use
only simple mathematical expressions, formulas or assignments, as shown in the
example or in the table below. For the second output do the same accordingly.
L- |
Output
Type . | Mame Diefault value | Description
1 [ILRE hd diff 0.0 Difference il -1
2 [hd| a;;) 0o Awerage of il and i1
E=pression: l‘.l
Mame E=pression
1 |[dif i0-i1
avg Oeiyz0
Fig. 49 Create FB without ST
3.11.1.1. Operations for simple FB-creation
Operation Example Result of example Description Priority
0 (2+3) * (4+5) 45 Brackets highest
*k 3**4 81 Power
- -10 -10 Negation
NOT NOT DIGO1 FALSE (if DIGO1=TRUE) Inversion
TRUE (if DIGO1 = FALSE)
* 10*3 30 Multiplication
/ 6/2 3 Division
+ 243 5 Addition
- 4-2 2 Subtraction
<, >, <= |4>12 FALSE Comparison
>=
&, AND TRUE & FALSE FALSE Boolean AND
XOR TRUE XOR FALSE TRUE Boolean Exclusiv OR
OR TRUE OR FALSE TRUE Boolean OR lowest
Table 5 Operations for simple FB-creation (no ST)

You may check the correct programming of your operation by pressing the
"Check" button.

When done, press the "OK" button and place the function block in the diagram.

m © iba AG 2009

Fig. 50

Manual Page 3-25

fb_example_1_1
th_example_1

EHat s EE]

Slider_1
Slider

- a—

]

Slider_2
Slider

J — — ||
] :l‘w .‘Daoo

il

Placement of new FB

If you click the "Export" button before clicking the "OK" button, then the FB you
just created will be available for drag and drop use on the "Local FBs and 3
Macros" folder in the "Functions" tree. This is really useful for large projects. The

FB is physically stored as .fbm file under \ibaLogic\configuration\FBs_Macros

folder on your hard drive. You can share with more people your FBs by copying

this file or by sending it by e-mail. When somebody share an FB with you, copy

the .fbm file in the \FBs_Macros folder on your hard drive before starting

ibaLogic

3.11.2. Creating a function block with Structured Text (ST)

Fig. 51

© iba AG 2009

The same principle as decribed before applies. But in order to program a func-
tion block in ST you must check the "Structured Text" check box in the function
block dialog window.

% FB_DiffAvg ST en_1

—General
Mame: [FB_Dilfdvg_5T_en
Description: |Th\s function block retuns difference and average
Structured text: &
Nurnber of inputs: |2 3: Mumber of outputs: |2 H: Nurnber of variables: |0 —
-~ Input:
Type . | Mame Default value | Description
1 JLREAL x| |0 0.a Input value 1
2 ILREAL = |n 0.a Input value 2
i~ Output:
Type . | Mame Default value | Description
1 JLREAL | |diff 0.0 Difference i0 -il
2 ILREAL | |ava 0o Average of i0 and 1
- Wariabl
Type | . I Mame Default value | Description
- Shuctured hext
diff := i1
avyg o= [i0+1)/2.0;
Check. | Impart. | Import ASCI Export Fant Cancel

Create FB with ST

Now, there is only one program code for the entire function block and no indi-
vidual output assignment as before.

First, let's have a look on some basic terms and elements of ST.

Page 3-26 Manual
3.11.21 Operations and statements in Structured Text (ST)
Programs written in ST look very much like those programs written in PASCAL. In
ST a statement is terminated by a smicolon. Comments are marked with (* at the
beginning and *) at the end. Data are processed by expressions and statements.
Expressions consist of operations (see table below) and operands and they deliver
a result. Operands can be literals, variables, other expressions and function calls.
Operation Example Result of example Description Priority
0 (2+3) * (4+5) 45 Brackets highest
** 3**4 81 Power
- -10 -10 Negation
NOT NOT DIGO1 FALSE (if DIGO1 = TRUE) Inversion
TRUE (if DIGO1 = FALSE)
* 10*3 30 Multiplication
/ 6/2 3 Division
MOD MOD (17,10) 7 Modulo (Divisionsrest)
+ 243 5 Addition
- 4-2 2 Subtraction
<, > <=, |4>12 FALSE Comparison
>=
= T#26h = T#1d2h TRUE Equal
<> 8 <> 16 TRUE Not equal
&, AND TRUE & FALSE FALSE Boolean AND
XOR TRUE XOR FALSE TRUE Boolean Exclusiv OR
OR TRUE OR FALSE TRUE Boolean OR lowest
Table 6 Operations in ST
3.11.2.2. Data declarations in Structured Text (ST)
In ST-statements the datatypes UDINT and DWORD shall be marked with "#" (e.qg.
UDINT#0, DWORD#0) in order to distinguish between them and signed INTEGER-
variables. Constants on base 16 (hex) are declared by "16#" (e.g. 16#2BC1F9) and
they are automatically considered as DWORD. Constants on base 2 are declared
by "2#" and those on base 8 by "8#". Time variables are declared by "T#" supple-
mented by "d" (day), "h" (hour), "m" (minute), "s" (second) and "ms" milli second
(e.g. T#67d12h17m42s).
Data declarations in ST (represented as text):
VAR_INPUT VAR_OUTPUT
in_bool: BOOL = FALSE; out_bool: BOOL = FALSE;
in_int: INT = 0; out_int: INT = 0;
in_dint: DINT = 0; out_dint: DINT = 0;
in_udint: UDINT = UDINT#O0; out_udint: UDINT = UDINT#O0;
in_dword: DWORD := DWORD#O0; out_dword: DWORD := DWORD#O;
in_real: REAL = 0.0; out_real: REAL = 0.0;
in_Ireal: LREAL = 0.0; out_lIreal: LREAL = 0.0;
in_time: TIME = T#Oms; out_time: TIME = T#Oms;
in_string: STRING := *%; out_string: STRING = **";
END_VAR END_VAR

© iba AG 2009

Manual Page 3-27

3.11.2.3. Statements in Structured Text (ST)

Statement

Example

Descriptions

RETURN

RETURN;

Go back, immediately abort function block

IF

IFa<b
THEN c¢:=1;
ELSIFa =b
THEN c:=2;
ELSE c:=3;
END_IF;

Comparison, selection

CASE

CASE f OF
1: a:
2: a:
ELSE a
END_CASE;

3;
4,
0;

Selection

FOR

FOR a:=1TO 10 BY 2 DO
fla] := b;
END_FOR;

loop (unconditional)

WHILE
Not supported

WHILE b > 1 DO
b:=b/2;
END_WHILE;

loop (conditional)

Not supported, risk of

endless loops

REPEAT
Not supported

REPEAT a:= a * b;
UNTIL a > 10000

Repetition

Not supported, risk of

END_REPEAT; endless loops

SET_VALID SET_VALID (<Variable name>, Set a variable valid / invalid (z.B. FB-
FALSE) Anschluss)

SET_DEFAULT SET _DEFAULT (<variable name>, | Set a default value of a variable
<value>)

ARRAY-access <variable name>[i] Access on an one-dimesional array

<variable name>[i,j,k,m] Access on an four-dimesional array

EXIT EXIT; Immediately abort function, e.g. in FOR-

loops

Table 7 Statements in ST

Please note that FBs can not be used in ST-statements or operations. Only
@ functions are allowedto be used.

Moreover, some restrictions apply concerning the usage of names for FBs, or
functions which are reserved by ibalogic, see chapter 7.2.

© iba AG 2009 m

Page 3-28 Manual

3.11.2.4. Function block PT1 in Structured Text (ST)

In the following a delay element of 1* level (PT1) is taken as a model for the crea-
tion of a function block.

The mathematical definition of a PT1 element is:

V= Yn_l*e—(TA/Tl) X1, (1 _e—(TAITl))

with:
Y = Output value of PT1-element
Yot = Qutput value of the previous program cycle
X1 = Input value
X1,1 = Input value of the previous program cycle
T1 = Delay time [sec], output value is about 63% of input value
TA = Scan time [sec]

A variety of function blocks for regulation require the task scan time and the
lapsed time since start of the application. These time values are made available by
the global variables in ST:

g_EvalDeltaTime = time lapsed since last start of the task; the use of this vari-
able will help to eliminate deviations in scan time and to
evaluate the correct results.

g_EvalTime = time lapsed, since start of the application
Functic_m Izllock "PT1_M" Programmcode "PT1_M"in Structured Text
FT1 M
TA Tl:=-time_to_lreal(g_EvalDeltaTime)/T1l; (* Get Cycletime
:lﬁ'i“l TA and evaluate -TA/T1 *)

E_TA_T1:=2.71828**TA_T1; ; (* Evaluate e** TA/T1*)
T O Y:=Y * E_TA T1+(X_N1*(1.0-E_TA T1)); (* Y- calculation *)
] T4 X_N1:=X1; (* Copy X1(n-1) = X1 *)

Requlator output PT1-function block
blue: scan time const. 10ms 1.000,00 -

red: scantime const. 50 ms 900,00 /
800,00 1 AA
700,00

600,00 "4/

500,00

YA
400,00 //
ya
/1

300,00
200,00
100,00 /I

/]

0,00 IERE RN RN RN R RN RN R R R RN RN R RN RN RN RR R

O W O 1 OO D ® OO DO
ENVIEEN | S SN N g i M i L

m © iba AG 2009

Manual Page 3-29

To create a function block use the menu - Edit - New < Function Block...

In the new dialog window there are five areas as follows:

Q General
Definition of number of in- and outputs, function block name and description

a Inputs
Definition of input variables with data type and description

a Outputs
Definition of output variables with data type and description

a Variable
Definition of block-internal variables with data type and description

a Definition
Structured Text (ST) statements and expressions

o PT1_M_1 (=] B3
—General
MName: [FT1_M
Drescription: IF'T1 without Enable
Stuctured test: [
Mumber of inputs: |2 3: Mumber of autputs; |1 3: MHumber of warables; |3 =
—Inputs
Type . | Name Default value | Description
1 |[LREAL - #1 1000.0 Input Yalue
2[REaL =] T 5.0 Time-constant
—Outputs
Tupe . | Mame Default value | Description
1 [LREAL =] |¥ 0.0 Dutput
—Waniables
Type M armne Default value | Description
1 LREAL - M1 0.0 Input W alue [n-1]
2 [[LREAL - E_TA_T1 0o E*TA/T1
3 |[LREAL - TA_T1 0o Diwv TA_T1
—Structured test
T _T1:=time_to_lreallg_EvalDekaTime)/T1;
E_TA_T1:=2 71828TA_T1:
Vo= E_TA_T1+p_MT*1.0-E_TA_T1):
H_MT=x1:
Check Impaort.. Impart ASCIL.. Export Fant... Cancel

Fig. 52 Create function block PTTM

© iba AG 2009

Page 3-30 Manual

3.11.3. Examples for statements in Structured Text (ST)

The following examples show the essential statements in ST (if, case, for etc.),
used for function blocks.

3.11.3.1. IF- and ELSIF-statement

The function block to be created "selMin" should always return at the ouput "val"
the lower value of either of its two input values "a" or "b". If the input "a" is lower
or equal to "b" then the boolean output "a_min" is set TRUE. If inputs "a" and "b"
have the same value then the LReal-output "val" is set to 0.0 and the boolean
output "A_equ" is set TRUE.

Function block "selMin" Program code "selMin" in Structured Text
oB_a_equ:=FALSE; (* Default setting *)
if iL_a=ilL b

then oL_val:=0.0; (* a=b, Output=0.0 und equ=TRUE *)
oB_a min:=TRUE;
oB_a_equ:=TRUE;

elsif iL_a<il_b (* Check a<b *)
then oL_val:= iL_a; (* a is smaller, Output to val *)
oB_a_min:=TRUE; (* a_min = TRUE *)

else oL_val:= iL_b; (* b is smaller, Output to val *)
oB_a_min:=FALSE; (* a_min = FALSE *)
end if;
Application model "selMin"

. selhdin_1
Slider_1

Shider
:|| 134
Eeol . [TRUE |
FALSE
Slider_2
Slider
50 |:I|
Eo ol .
3.11.3.2. CASE-statement
The function block to be created "selSetpoint" should return at the output "sel_w"
one of the three LReal-inputs "w0", "w1" or "w2", selected by the value of INT-
input "sel". If the input "sel" is not equal {0, 1, 2}, the ouput "sel_w" will be set to
0.0 and the boolean output "Err" will be set TRUE.
Function block "selSetpoint" Program code "selSetpoint" in Structured Text
OB_Err := FALSE; (* Default setting *)
CASE il_sel OF (* CASE- selection 0,1,2 *)
0: oL_sel_w:=ilL_wO; (* CASE = 0 *)
1: oL_sel_w:=ilL_wl; (* CASE = 1 *)
iL_wt 2: oL_sel_w:=iL_w2; (* CASE = 2 *)
oB Err ELSE oL_sel_w:=0.0; (* value il_sel unequal 0,1,2 *)
iL_n2 B 0B_Err:= TRUE; (* sel_w = 0.0, Err = TRUE *)

END_CASE;

m © iba AG 2009

Manual Page 3-31

3.11.3.3. FOR-statement
The function block to be created "evalMV" should return the total sum and the
average of an array of 16 LReal variables. The function block uses the internal
variable "count" for counting.

Function block "evalMV" Program code "evalMV" in Structured Text
oL_total:=0.0; (* Default setting *)
FOR count:=0 TO 15 DO (* FOR- 0 to 15 *)
oL MY oL_total:= olL_total+ilL_Array[count]; (* total-value *)
iL_Array - END FOR:
ol_total oL_MV:=oL_total/16.0; (* Mean Value evaluation *)

3.11.3.4. EXIT- and RETURN-statement

The previous created function block "evalMV" has been renamed in "evalMV_var"
and supplemented with a further INT-input "il_Num". This additional input defines
the range for sum and average evaluation in the array, e.g. 7 = sum and average
of array-elements no. 0 ...7. By the mean of the "EXIT" statement in the IF-query,
the FOR-loop will be terminated before reaching its limits, but the average value
will still be evaluated. Using the "RETURN" statement instead of "EXIT" will termi-
nate the function immediately without evaluation of the average value.

Function block "evalMV_var" Program code "evalMV_1" in Structured Text
oL_total:=0.0; (* Default setting *)
iL_Array oL MV FOR count:=0 TO 15 DO) (* FOR- 0 to 15 *)
oL_total:= olL_total + iL_Array[count]; (* total-value*)
il Num ol total IF count>(Cil_Num-1) (* max. Number Input reached *)
B B THEN EXIT; (* or RETURN; FOR- Loop termination *)
END_IF;
END_FOR;

oL_MV:=oL_total/int_to_real(il_Num+l); (* Mean Value *)
Application model "evalMV_var"

Elider & fillfsray_1
Slider fillfuray
u) } CHzo zo Mo
0o | s | [soo 20 Hit
Slider 7 *7 20 Mz
Slider —_— 20 M2
:I‘ —J— ‘E (40 | an e
00| ' ' 700 4.0 Smld e Al _wvar_1
Slider_ : a0 L evalMy_var
Slider 4.0 L7
oD 20 []iL_aray oL MV []120
B — ey 55 e
0o 0]« |3 [z00 5.0 i Tli_bum ol _tetal [
Stider 9 1_'? Mo
Slider —_— &0 i1
:l‘—)— CHED | 30__Hiiz
100] s |0 [s00 3.0 i3
3”4
—[80__His

© iba AG 2009 m

Page 3-32 Manual

3.12 Creating your own DLL

Creating macros and function blocks with ST are very simple ways to solve many
problems of automation. But as easy it is to create them as easy is it to copy them
and to unserstand their manner of working.

Sometimes you may prefer a less open prove of your engineering expertise, e.g.
in case of a sophisticated technological solution but you want to prevent the
cheap distribution of your know-how.

3 In such a case the possibility of creating DLLs which include your brain's work in a
compiled form so that no one can figure out your tricks is a real advantage.

3.12.1. C-Compiler

For writing and compiling the DLLs we've tested and approved the following C-
compilers:

a Microsoft Visual C++ 5.0
a Microsoft Visual C++ 6.0
a Other, such as Borland are supported too

3.12.2. Source files needed for creating DLLs

The following source files which come with the ibaLogic installation CD-ROM are
required:

» namedll.cpp: contains the Procedures and the DLL — Body;
the user may add inputs, outputs or make changes in the Procedures
InitEvaluation, Evaluate, ExitEvaluation
» namedll.def: contains the Assignment between DLL Procedures and Num-
bers; the library name must match the DLL Name !!!
» dllIForm.hpp: contains the interface definition;
no changes neccessary.
A Refer also to chapter 7.1. There you'll find the program lisitngs of the "sam-
pleDLL" which is delivered along with ibalogic.

3.12.3. Procedure for creating new DLLs
For creating new DLLs it is recommended to use the simpleDLL frame:
Create a new DLL project with your own DLL name.

Copy the simpleDLL.cpp, simpleDLL.def and DLLform.hpp files into your
project directory.

Rename the simpleDLL.cpp and simpleDLL.def files according to your
own DLL name.

Change the library name in theDLL.def file according to your own
DLL name.

Add the .cpp, .def and .hpp file to your project.
Build the new DLL.

Copy the new DLL into your IBALogic directory.

m © iba AG 2009

Manual Page 3-33

3.12.4. Frequent obstacles

Q Don't forget to add the .def File to your project, else the DLL won’t work
with IbaLogic.

@ You may add and use variables to your DLL or Evaluate Procedure, but if
you use more than one instance of the same DLL you must save the data
used between two calling cycles in the dynamic data area. Otherwise the
variable exits only once for all instances.

Q In case you want to calculate some cycle time-dependent functions you
should use the variable "pGlobal" which is a pointer to a relative time vari-
able.

Q The DLL runtime will be added to the cycle time of the task which is calling
the DLL.

Q Itis recommended to use threads for time consuming functions.

Function blocks should use the "invalid flag" and they should write data to
the periphery only if the "online flag" is set.

Q For the purpose of testing a DLL ibaLogic may be started as the executing
program.

The interfacing functions of a DLL will be called directly from ibaLogic.

Q Not all programming errors which may be included in a DLL can be de-
tected and cushioned by ibalLogic. Hence, these errors may even cause a
crash of ibaLogic.

© iba AG 2009 m

Page 3-34 Manual

3.12.5. Linking the DLL in ibalLogic

ibaLogic uses the following calls in conjunction with the function block interface:

Call

GetInstanceDynamicDataSize()

Function

Query for fixing the size of dynamic data

GetDlIDescription()

Query of description of the DLL

GetCount()

Query of number of inputs and outputs

GetName()

Query of name of each input and output

GetDescription()

Query of description of each input and output

GetType()

Query of datatype of each input and output

GetArrayHeader()

Query of array datatype of an input or output

GetDefaultValue()

The following call will be needed

Call

InitEvaluation()

Query of default value of an input or output

in runtime:

Function

Single call at start of evaluation; used for initialization

SetlnputValue()

Cyclic call for every input once per cycle prior to each
evaluation.

Evaluate()

Cyclic call once per cycle

GetOutputValue()

Cyclic call for every input once per cycle after each
evaluation.

Exit Evaluation()

Single call at end of evaluation; used for cleanup

© iba AG 2009

Manual Page 3-35

3.13 Testing and debugging of projects
ibaLogic offers several tools for the purpose of testing function blocks and more
complex networks.

3.13.1. Single and multiple step mode, halt the project

If a project is being evaluated it could be switched into single or multiple step
mode. This is useful in order to test sheer logical functions (sequences). There are
the following corresponding buttons in the tool bar:

@_l (from left to right: Start/Stop Evaluation, Pause Evaluation, Evaluate 1
step, Evaluate n steps)

In order to switch in single or multiple step mode first press the pause-button.

it If the project is running online (purple background color) there won't be no

refresh of the external resources (in-/outputs) for the time between two steps!
This means that the values will stay as they are what may have an unpleasant
impact on the process.

In this case there is a risk of hazard for life or machinery!

The number of steps to be evaluated at one click of "multiple step" can be ad-
justed from 2 up to 64 steps in the menu > Evaluate > Set Multiple Step Count.

3.13.2. What to do, if values become sporadically invalid?

During evaluations it may occur that output values of function blocks become in-
valid due to bad starting conditions, division by 0 or limit violations.

Such invalid states are indicated in ibaLogic by a red cross in the output "terminal"
of the function block, a red frame for the output value display and —if running in
evaluation mode - the red representation of the value itself.

fo1111_1
fbo1114

o ST co—

What could cause a variable to become invalid?

Invalid real value

Division by zero

Intended setting of the "Invalid-bit" with set_valid(<variable name>, FALSE)
Assignment of array elements if the index limits are violated

Assignment of expressions, which contain already invalid values

o 0 0 0 0 o0

Being part of a chain or loop and depending on other variables in the same
chain which are invalid.

Q Input resources if the corresponding PC-board (FOB 10, FOB 4i) is not avail-
able or not alive and if the option "Unavailable signals are invalid" has been
selected in the system settings.

© iba AG 2009 m

Page 3-36 Manual

1. Note: Arrays have exactly one valid-flag. If one element in the array is
@ invalid, so is the entire array.
If a variable becomes invalid, the last valid value is preserved.

If an invalid variable occurs in a diagrammatical feed-back branch, there are
several measures available for trouble-shooting or correction:

e Start/Stop Evaluation or

e Breaking up the logical network (delete a connection line, insert a
function block etc.) or

e insertion of a "set_valid"-statement [set _valid(<variablenname>,
TRUE)] into the logical network; by that it's possible to configure a
project in that way that it can fix the problem automatically in case
of occurrence.

Of course, the first two posibilities require that the variable won't stay invalid
forever.

3.13.3. The ordinary oscilloscope for testing

This oscilloscope is designed for a swift check of a signal shape. It is to be placed
like a function block and it displays immediately the connected signal. The input
is of datatype "untyped". Arrays can not be connected to the oscilloscope (see
also next chapter). There are no scales in order to survey the signal.

Cl Signal Processing
e — Oscilloscope_1
: ual Swi Ozcilloscops
N i - Generstor [IH 0.98221 88223 !
show : Shon s
= [H [0.2822]
- . - ““l““‘
[]-D Global Variables
--{Z] Global FBs and Macros

Fig. 53 Simple oscilloscope

3.13.4. The Multichannel Oscilloscope and Logical Analyzer

These two function blocks are very similar to each other and base on the same
@ principle but they are used for different purposes.

Q Thelogical analyzer (Ch32Analyzer) is a tool for display of up to 32 boolean
signals simultaneously (only datatype BOOL is allowed).

Q The multichannel oscilloscope is used for display of up to four signals in or-
der to survey the signals, to optimize closed loop controls or to represent
arrays (vectors, e.g. a FFT-result).

3.13.4.1. Usage

One of these function blocks should be placed in the function block diagram.
Connected to the signals, it can be considered like a probe without display. Unlike
the ordinary oscilloscope these function blocks use no extra processor time for
graphic display as long as it is not enabled. So, it is possible to place and connect
several oscilloscope-function blocks in the diagram without requiring excessive
computing time for display except for the one which is activated. Only one in-
stance of the oscilloscope (or logical analyzer) can be displayed at a time. Switch-
ing over to another display is easily done by pressing the tabs at the bottom of
the display window.

m © iba AG 2009

Manual Page 3-37

¥-{_]] RegistenMultiplexar
¥-{_]] Edge Detection
-{I3 Counter

B Ch40scilloscope_1
[« s

[

-] TimenTime functiens

[

£

£

loscope

7-{I Analytic
£-{Z0] Communicsticn
£-{Z] Signal Processing
JFB] ChaOscilloscope : Multi channel Oscillescope =]
h32Analyzer : Logical Anslyzer

cilloscope : Oscilloscope =] E3
JFE Switch : Manual Switch

FE] Slider: Manusl Slider

showString : Show String Value
DatFileWrite : Dat File Write
DatFileCleanup : Dat File Cleanup
{1 Global Variables

{I2] Global FBs and Maoos

(2 slovel bL1s
{2 Locsl FBs and Maoos ¢ 1 2 3 4 5 & 7 &8 8 10 1 12 13

(-3 Local DLLs

{AiChadsciloscope_1}

Fig. 54 Multichannel oscilloscope
The number of (input) channels can be adjusted after doubleclick on the function
block.
t-* Ch40scilloscope_1
—General
Marne: ICh4Dsci||oscopa
Deseription: IMuIti channel Dzciloscope
ured text:
\Number of inputs: W Muber of outputs: |0 —
—Inpd e
Type . | Mame Default value | Description
1 |B0OL - trigger TRUE Trigger
2 |REAL hd #Unit1 1.0 B0
AMINTYRFD = rhl e
Fig. 55 Adjusting channels for multichannel oscilloscope
In case of the logic analyzer each additional channel means one binary input
(BOOL) more. In case of the multi-channel-oscilloscope every additional input
means one signal input (ch), always together with a scaling input (x Unit). By
means of the latter input type, the display of each channel can be scaled indi-
vidually. If a scaling input is not connected the corresponding channel will be
scaled like the previous channel.
As long as the "trigger'-input is TRUE, the display is continuously refreshed. "trig-
ger'-input = FALSE freezes the display.
Scaling the inputs
The default value for each scaling input is 1. Every value (e.g. real value or array
element) is scaled by this quantity. For array elements this might be more com-
plex if another base than the basic cycle time is needed.
A See also box Dynamic scaling on page 3-42
3.13.4.2. Operation
In order to open the display select the function block (Ch4Oscilloscope or
Ch32Analyzer), make a right mouseclick and choose “>Show Multi-Channel-
Oscilloscope in the context menu or just click on the toolbar button B2 .
Use the same commands to show the logical analyzer display.
© iba AG 2009

Page 3-38 Manual

The user interface and the operation of the oscilloscope has been improved since
ibaLogic version 3.86. The new operational concept resembles the one of ibaAna-
lyzer which is already well known by many users.

Different coloring of the curves, continuous compressing and stretching of the X-
and Y-scales as well as the shifting of signals, respectively the combination of
several signals in one signal strip and finally the measuring of values by means of
rulers are available features.

Context menus are available in the areas of X-axis, Y-axis, graph and signal name
for the corresponding settings.

Zooming is possible by holding the left mousekey depressed when drawing a
frame in the graph. The command Autoscale in the context menu of a graph
zooms out completely. To open the context menu just make a right mouseclick in
the graph of the oscilloscope. Some options and settings are offered in the con-
text menu concerning the display of signals.

A zooming in steps is possible with the context menus of X- and Y-axis.

The X- and Y-axis may be shifted when pointing on the scales, holding the
mousekey depressed and move the mouse.

Using the Autoscale function may be helpful when a signal is not visible because
it's out of scale.

&2 Signals M=l E
=l ﬁ: — i schl; Task]. generator] 2 (zec) cale
= % st ChilsP
= Dizplay points [analog]) Chil+D
” Dizplay zolid (digital) Chrl+5
= Display grid CikG
1 Show markers Ctrl+bd
5 . Show markers for all stips Chril+H E2Y
ID 2| 2{ Dizplay marker tables Chrl+T 1|2 1|4 15I
E Signals I Apply markers to all stips. CirlsH
Autozcale [Chil+4) Fropgties i 4

Fig. 56 Multichannel oscilloscope, autoscale

A simple measurement of the graphs is provided by two markers which can be
activated via the context menu. The refreshing of the graph must be halted for

that.
& Signals ==l
=l §: — "chl: Task].generator] 2 sec) "
Autozcale Chrl+&
- *
o | Dizplay pointz [analog) Chil+D
- Dizplay zolid [digital) Cti+S
7 Display grid Ttk
] Show markers Chrl+hd
5 1 Show markers for all stips Ctil+H 36
ID 2| i Dizplay marker tables Chr+T 1|2 1|4 15I
E Saels I Applymarkers to &l stips CrlsE
Stop (CHl+F) Froperties Chi+E j

Fig. 57 Multichannel oscilloscope, stop refreshing

m © iba AG 2009

Manual Page 3-39

In order to see the values you should select >-Display marker tables in the context
menu. A table with the Y-values of all displayed graphs related to the X-position
of the markers and their differences will open below the graphs.

i Ch40scilloscope_1

i — Mchl: Taski .ganeraTor‘I 2 [seq]

=
in

LW —

n 38
T T T T T T T T T T T T T 1
1) 1 2 4] 5] T 5] el 10 11 12 1 14 13
x| E Ch40scilloscope_1
Signalname | ®1 2 | 1 2 wa-Y1
" chi: Task] 233114 13.0053 10.0748 -0.587785 -0.587785 0
Vi

Fig. 58 Multichannel oscilloscope, rulers and data table

Each channel has its own graph if more than one channel of the multichannel os-
cilloscope is used. Each graph has its own X-axis and —scale (corresdonding to in-
put xUnit).

5 ChdDscilloscope_1 il E3
=l BT Aok Taskeherctor! 2 sec] T T
. =
- R R S =
o 1 2 3 4 5 B 7 8 k] 10 11 1234
=

= | — ok Task] generstorlE [s80) T
|
|
|

T T T T T T T T T 1
a7 T 8 9 10 " 12 13 14 15

=] T A o] Thokl genrator! 4 sec]

L
@
i1
]

\

81 |

= I
o 05 1 15 2 25 3 35 45 s 55 581

{Ajthitissiozops 1) | g3 Chazanabzert |
x| {A Ch4Oscilloscope 1

Signalname [=1 [z [x2-1 [[z [vz-v1 |
"\ ohi Task1.gen 398624 39981 535666 0368565 0.24753] 0121035
Signalname [[x2 [x2-x1 [v1 [z [v2-m |
"\ oh: Task1.gen 8.6054] 145327 53873 | 1| ol
[Signalame [[x2 [x2-x1 [v1 [z [z]
[ch Taskl.gen 1.99652] 40105 20413 2 E| o

Fig. 59 Multichannel oscilloscope, multiple channels

The markers will be visible in all graphs after choosing “>Show markers for all
strips in the context menu. They may be moved indepently. If you like to have
them all in the same position then choose a pair of markers in one strip as a ref-
erence pair. After the markers have been positioned open the context menu in
the same strip and select “-Apply markers to all strips.

© iba AG 2009 m

Page 3-40 Manual

Finally, several signals may be displayed together in one signal strip, just like in
ibaAnalyzer. Place the mouse cursor on a signal name until it changes its shape
(little waveline).

%)

0l

Fig. 60 Multichannel oscilloscope, move signal
Then drag the signal (mousekey depressed) to the target strip where the signal
should be displayed.
Drop the signal somewhere in the strip: the signal gets its own Y-axis.

Drop the signal close to another signal name, as soon as a little arrow appears:
the signal is assigned to the same Y-axis as the existing signal.

M—‘ -Ef\yz,'l Tzzk

Fig. 61 Multichannel oscilloscope, gather signals

For a better distinction of the different curves paint them in different colors by
“>Auto-color in the context menu on the signal names in the strip.

i Cha0scilloscope_1 C-C

o
= "\/CE'I. TasqlganeratuﬂZ [zed)

Msch2: Task].generator!6 [sed
Moo Taskl generator 4 [sed

) \ \
|
|
| |
| |
a a
2 3 4 5 [T 1 a 10 11 12.44

[Ehitisciloscape 11 [g Chazenaes 1 |

x| E Ch4Dszcilloscope_1

Signalname Eall e #2-H1 1 2 Y2-1

"\ chi: Taskl.gene 5.37173| 7.36633 1.8352 0.540281 -0.0314108 -0.5972232|
"\ ch2: Taskl.geng 5.37173| 736633 1.9352) -0.5) 0436364 1.23636|
"\ ch3: Taskl.geng 037173 7. 36633 1.9952) 0 0 0

i

Fig. 62 Multichannel oscilloscope, automatic color

Now you can measure the signals by means of the markers.

The logical analyzer works in the same way, but there is no Y-axis because the
values of the digtal signals can only vary between TRUE (1) and FALSE (0).

=l] it Taskt Switch 1.out (channel DW T
| \
| \
| \
| ‘ 80
; T T : 1 ’ , ’ 1 T T T i il
o ns 1 15 2 25 3 35 4 45 5 55 1 654
£/ Signals Ch3zanalyzer_1
=] §f Ch3zAnalyzer_1
[Signalname [[=2 [x2-x1 [[z [rr2-v1 |
JL chi: Taskct Swit 200 400445 200223 1| 1| [

Fig. 63 Multichannel oscilloscope, CH32Analyzer

m © iba AG 2009

Manual Page 3-41

3.13.4.3. Sample application for multichannel oscilloscope and rfft function
block
The following example shows how to use a multichannel oscilloscope in conjunc-
tion with a rfft function block. Please note that there is an input channel of
ARRAY-type and that the scaling (xUnit) of both the time axis and the frequency
axis (FFT) as well is evaluated dynamically.

Function block diagram

add_1
add
Generator F: 25Hz A: 750 [IH-0.580632 -‘ 0580632 HJin1 G ot
Generator F: 10Hz A; 1000 [IH » K Hinz enerator_frequencies
Ganerator F. 5 Hz A 1260 E_OD_EUQBDZ7 | | 00_'1220;;;7 —Em out 055808 |—— Composite_signal P Chanzollloscope
Generator F: 1 Hz A 1500 [IHE 10077 E01] . LT T oeatiming =D trigger
‘ 1 [=Unitt
0580832 T cht
‘ 1 [0 Uitz
0205447 HToh2
1 [T>units
0.12za029 Hoh3
1 [0 Unit4
EA0077E-01H] ch4
FFT of 1024 values ‘
FB_Collsct_1029_1 1
FB_Collect_1029 R
o0 [H7e6.600 f==F Time_Signal_1024)) Time_Signal 1024 (2) s={780.006 _ Hin ot T
= trigger [i—Trigger_1024 Trigger_1024 1 tiigger
oo R e -0.56805__Ll ‘Uxum_T' \E 0.05 . xufi_T\me_S\gna_'\DQ)fl . = =5
sUnit_FreqSignal [0 0185585 |— =Unit_Freq_signal_inz4
| fb_const_compo_1024_1
FFT_1024 Tb_consl_compo]
e oo - 1 — = o0 o F=F FFT_Signal_1024)
Trigger_1024 ¢1) .|_E|mgga.) Trigger_1024 (3) trigaer
) wlnit_Time_Signal_1024 (1) —{0.05 H =<Unitt
Time_Signal 1024 (1) s={7o6.008 _ H ch
) #Unit_Freq_Signal_1024 (1) —{0.0185605 H]x<Uniz
TFFT_Signal_1024 (1) =00 H chz

Fig. 64 Multichannel oscilloscope and rfft, example
Explanation

A composite signal is created by adding four signals with different fre-
quencies, which are generated by ibalLogic's generators. The four single
singnals are connected to a "probe" of the multichannel oscilloscope.
The units of the X-axes (xUnit) have the default value 1.

The composite signal is the input of the function block

"FB_Collect _1024" which had been created with Structured Text. The
purpose of this function block is to transform the time-continuous input
signal into an output which is an one-dimensional array with 1024 cells
(Time_Signal _1024). In the same time the xUnits for time- and fre-
guency-axes are evaluated.

Refer to the box Dynamic scaling below.

The latter values are connected with the inputs xUnit1 and xUnit2 of
another "probe" of the multichannel oscilloscope (FFT_1024).

Finally, the function block generates a boolean trigger signal which is
set TRUE for one cycle, whenever the the array has been filled (every
1024 cycles).

© iba AG 2009 EL l

Page 3-42 Manual

The signal Time_Signal 1024 is then connected to the input of a rfft
function block. Everytime the trigger signal is TRUE the rfft takes in the
array which contains the amplitude values of the composite signal
(1024 samples). By means of the FFT function the frequency spectrum
of the composite signal is evaluated and written the output which is an
array again but consisting of 512 cells and containing the frequency
amplitudes. Each cell (index) of the output array corresponds to one
frequency. The first cell (index = 0) corresponds to the constant como-
nent of the input signal (f = 0 Hz). Every following index corresponds to
a higher frequency which is equal to the one before incremented by
xUnit_FreqSignal. If, for example, xUnit_FreqSignal = 0.0978 it's possi-
ble to describe a frequency range from 0 to 50 Hz (511 * 0.0978).

The function block fb_const_compo_1024 eliminates the constant com-
ponent by writing 0.0 into the first cell of the array resulting from the
FFT, everytime the trigger is TRUE.

The display of the multichannel oscilloscope (probe FFT_1024) looks as follows:

EFFT_1024 H[=] &3

T — okl Tk FB_Collect 10241 00 (7]

™
4

0ooz - 00Ew
|

o
L

002k 000Z-
1 I

T T T T T T T T T 1
L] 1 2 3 4 B] 7 8 9 1023

— "\ sch2 Taskl fb_const_sompa_1024_1.01 (7]

ooat oog
| I

oog
I

Fig. 65 Multichannel oscilloscope and rfft, result view

The upper strip shows a time-based graph of the composite signal consisting of
1024 samples.

The lower strip shows the resulting FFT graph which shows significant peaks at
frequencies 1 Hz, 5 Hz, 10 Hz and 25 Hz which correspond exactly to the four
generator frequencies.

time (10 ms = 0.01 s). The XUnit of the frequency axis for the FFT-
representation is the result of the computation of number of samples and time
distance between the samples (XUnit time), considering the sampling theorema.

Dynamic scaling
@ The XUnit of the time axis in the example above corresponds to the task cycle

1
(xUnit _TimeSignal * 2)(1024/2)

xUnit _ FregSignal =

In the multichannel oscilloscope the XUnit of the frequency axis is the scale
index of one sample in the FFT-result array (output of the rfft function block),
i.e. the distance on scale (in Hz) between two FFT-results.

IbaLogic should run in signal manager mode for a proper FFT-calculation.

m © iba AG 2009

Manual Page 3-43

3.14 Save the project against unintended changes

In the menu bar you'll find a button with the key-icon & . This command is a
mean to lock the online layer, i.e. to prevent modifications of the project. It is still
possible to navigate through the function block diagram and to open macro
blocks in order to view.

If the key-button is pressed, then ...

Q all editing functions are switched off

Q@ the usual Windows functions, such as collapse, expand or close windows
are disabled.

0 to save, to read or to exit a program is not possible.

the hardware settings are read-only.

If the key-button is pressed again, the editing function is unlocked again (see also
next section).

3.15 Password protection and other protecting measures

A project can be protected by a password. If the password protection mode is
enabled, a password is required in order to lock and unlock the layer with the
key-button &

Specify Online Lock Password B

Enter Password: I ““““““““““
Corfirn: I xxxxxxxxxx

W {Pratect Creation of Hot Swap Laver

Ok I Cancel |

Fig. 66 Activate password protection

If the checkbox "Protect Creation of Hot Swap Layer" is enabled a Hot-Swap-Layer
can not be opened, too.

© iba AG 2009 m

Page 3-44 Manual

3.16 The Hot-Swap layer

One of ibalogic's unique features is the occasion to modify a layout during online
operation without affecting the process. The modifications are to be applied
(swapped) later whenever it is suitable. This is made possible by the use of a so
called Hot-Swap layer, which is in fact a kind of workbench, independent from
the running layout. Particularly modifications which would break up an existing
network or which would shortly delete connection lines, e.g. when inserting a
new function block between two others. The Hot-Swap-Layer is a crucial feature
particularly for applications in continuous processing lines, like in paper produc-
tion.

If created over the menu > HotSwap > Create or the command button H the
Hot-Swap layer is an exact copy of the online program. While the online layer is
indicated by a purple background color, the Hot-Swap layer is grey.

The Hot-Swap layer can be modidfied and tested (evaluated) like a usual layer.
But the Hot-Swap layer won't be set online, i.e. the modification will be compiled
and evaluated but it won't affect the outputs. Of course, the real process inputs
are used for evaluation.

The Hot-Swap-Layer will not become the online layer until it is activated by the
user with menu > HotSwap < Apply to Online Layer. The switch-over will be
done smooth and correctly in terms of cycle and evaluation chronology.

[a[$=IEel TechhoSting Hardware Help
Create

| =) L] *

| Applte Enlime Laver | ! %@
[Elmze

Fig. 67 Create Hot-Swap layer

At any time it is possible to switch back and forth between Hot-Swap and Online
layer by pressing the button =

The menu command > HotSwap > Close will dispose all modifications if not
stored as suggested.
3.16.1. Conception of data handling and memory in Hot-Swap

When the Hot-Swap layer is active, it has to be ensured that no operation via OPC
gets lost. Also, locally stored information of function blocks have to be kept in
memory during switch-over.

The method of ibalLogic ensures this by adding only the information of the new
function blocks to the online layer while keeping the other information un-
changed.

OPC input and output connectors (OTC) will not be evaluated in the Hot-Swap
layer.

m © iba AG 2009

Manual Page 3-45

3.17 Printing a project

ibaLogic offers a variety of printer control functions which can be preset. Gener-
ally, the WYSIWYG-method (What You See Is What You Get) applies.

3.17.1. Setting the page size for a project

Basically, size and orientation of printed pages should be adjusted at the begin-
ning of engineering a project. This is to avoid changes of print format in the fu-
ture, and thus, additional work.

page s Xl By using the menu & File > Page Setup... the window as

shown on left side will open.

This is the place to make the print settings for the entire
project.

@ It is recommended to use format A4 landscape or lar-

— Paper
- ger. Other formats, e.g. letter, are also available as tem-
lates.
Source: Auta ﬂ P
— — According to these settings, the pages are marked in the
P HEEBE function block diagram by a dotted line.
& Portrait Lef [0175 Right: [0.23
The margins are either I/O resource margins (for pages at
 Landscape Top: ID,2 Bottam: ID,'IBS N . .
the far right or at the far left) or dotted lines in case to

: devide two pages horizontally or vertically.
ak I Cancel | Printer... |

@ Never place a function block on a borderline because
it could be cut when printed!

Left, you see such a borderline between two pages.

e ne st
e carar
17 S0 et Auts IR T S5 -
T vack_and_vvedlaa {1 Tra FIT

In order to keep the printout clear it is recommended to use

T el : IntraPage-connectors (IPC) if vertical connection lines cross a
e page border. With IPCs it's easier to track a signal. With ver-
H_EL:] sion 3.80 of ibalogic IPCs are created automatically when

i drawing a vertical connection line over a page border.

(see also chapter 3.9.2)

3.17.2. Inscription and layout of pages

Inscription and layout of the printed pages are designed in compliance with in-
ternational standards in order to meet the usual requirements from technical
documentation.

Every printed page shows references to creator and date of creation (both ap-
plied automatically at first page creation, taken from the general file settings),
change notes and page description (title). These properties can be set and edited
by using menu > Edit > Page > Page properties or by a right mouseclick on an
empty place in the page (> Edit menu)

© iba AG 2009 m

Page 3-46 Manual

The following dialog window will open:

P‘ e pege procet — — 2 The example (left) shows the tree structure of the
Page A1 Trigger canditions 020702, deta fomats s [Pipages IayOUt.

Flatness

The field in the upper middle part of the window
shows the change history. Change notes have to be

Apnly-

e “7 | entered in the input field below. Date of creation and
- Tk initials of the creator are written automatically at the
Ehtkdd l%llj’: ,': time of page generation but they can be entered ma-
Last Modifed [[0 nua”y as well.
Eleasel I— . .
e — [- | The short sign of the creator will be taken by default
e from the settings, made unter menu >file >Settings
Cancel | Apply to all pages | SEdit Settings_
In the lower field the page description (title) should
be entered.

The coordinates of the page are indicated in the up-
per right corner.

When the data input is completed press the "Apply.."-
button in order to save the inputs.

Note: Depending on the position of the highlighted bar in the tree structure, i.e.
whether it marks a page or a task, the settings of the page properties apply to a
single page or to all pages in the task. If only one page is selected, the check boxes
"Apply Selection" are hidden. If a task is selected then the check boxes are available
in order to control which information should be applied to all pages.

The page coordinates (i.e. page numbers) refer to the following matrix: A1 | A2

Letters refer to rows and numbers refer to columns. B1 | B2

3.17.3. Printer control settings

The subject of printing can be specified in order to avoid a waste of time and ma-

terial.
Print
A printout can cover an entire layout or parts of it. (Print range)
—Printrange———— [~ Print objects
& Layer M Task Layer refers to the entire Layout (all tasks).
' Currert Wind W 1 .
en o v e Current Window refers to the current selected task.
" Selected FB I¥ Function Block
! Hange of pages ¥ recursively Selected FB refers to a FB or group of FBs which are selected.
| Furthermore, there is a selection of objects to be printed. The
et info eneraie option "recursively" e.g. will lead to a printout of the contents of
[Header [Table of Contents every macrotype which is used in the layout, once per task.
P P Stnctucd T [/ Gross Rterence Additional information can be added to the printout. The op-
e tion "FB Structured Text" will lead to a printout of the code of
- function blocks which are written in Structured Text.
large font
Cancel | "Large font" will promt the printer to use a larger font. It de-
pends on the paper size which font is the better choice.

The option "Table of contents" will always add a coverpage and
a table of contents with reference to the selected range and ob-
jects.

m © iba AG 2009

Manual Page 3-47

Please refer to the following table for some examples of frequent printout re-
quests.

Printing.... Layer | Current | Selected | Task | Macro | Function | recursively | Header| FB ST | Graphic
Window | FB Block

complete layout with

all tasks, Task parameters, Task
as ST and graphical FBD but 0
no internal macro information
and no ST code of FBs

as above but with internal
macro information (graphic)
as above and addtionally ST
code of local FBs

only the graphical FBD of the
currently selected task but no in- a
ternal macro information
only parameters of selected FBs

but no ST code d d

(M
(M
(W
(M
(M

(]
(]
(]
(]
(]
(]

O 0 d d
OO0 d O

Table 8 Combinations of print settings

3.17.4. Adding your corporate logo on the printed pages

A specific graphic or picture can be placed on the cover page of a layout print.
The corporate logo will appear on every page in the footer. With its first start,
ibaLogic generates the files ibaLogo.bmp and ibaTitle.jpg and stores them in the
folder ...\configuration. This is done even when the files are not there.

If you wish to include your own corporate logo (ibaLogo.bmp) and / or cover pic-
ture (ibaTitle.jpg) just replace these files by those with your logo, resp. picture,
but using the same name and the same format.

The scaling of the logo, resp. picture, is done automatically according to the
available space when printing.
3.17.5. Adding your corporate copyright note

A specific copyright note can be placed on every page. Like for the logo or the
picture, you have to modify a standard file which is named ibaCopy.txt. This file is
also stored in the folder \configuration and it may contain any text. The default
setting is "Copyright © 2001". You may use any ASCll-editor to edit this text.

3.17.6. Printed pages

The following picture shows a typical page of a layout print with its special fields
and their source of information.

© iba AG 2009 m

Manual

Page 3-48

o2}
L | £ 4 | 1 | o | 5 g L | 9 | 5 | ¥ | € | z L m
} «
ZioL 7 afieg IINSSEJUBIS|SanBLaLos\UOT 1Bo1BaND pLE'E LolsIap JBOTEAl| L1001 L-OZ/E0/Z00Z pasesjay o
R— L A
\y| ameuipood abed pauIpol 1587 o) Q m
5 g =
lonqueg MseL SuonIpUoD 186611 I L0-GL-ZL payoaLD 2 g ©
i i (426610) uomisinboe ejep jo jouo
___zwwmar_* waloid ’ N Bw L0-EL-2k pajEaID BUI SIEWIOL BIEP '20-40-20| ¥
!
bl s r_’ Clg e M
ey juy
paads O
wonsmboy sefa O] (R aorg poads W_T T | I— |
— e [—o— O] e g5y
L
VEw]
y e u
an du LU [l m B & we u o} { oH suney Fi
snjes | rd Bups—oipup
BumieEe B.E VBu o] Wi Eu oozl miea
| - Bumsimebay y ey o} re 1l #H ol n
A u”“_..uumu_ E meu—“_m _rk[;lt,.f_.n_a GH esov po0r ok "mioa
\ A supling siEaiy b
5 ——fhwm . ¥ | /
\ b 4
sabed (e of Tgddyy _ foueT

N

_ [Eal) _ IHT g ase

. s ,E:DN,E:\;

_ LIk0T] 540 _ ADp

sUoypuoa 19661 | uonduass] abiey

Tl_l
L LU L L

sLe _._
WELZL
_ﬂ J1266L) uonrbae Bep Jojaiues _Eou_ s .-.-nuﬁﬂm_-
E_u_ :UMN_H_ N_._._Mz at
\] pouyg ot
V4 11 _
=] \ = 2
[Iliall
= e L) ssaell by Ay g
1o=lolg - I ER] 5] 5
()
] uj E—T=T [
zpesy [i (o))
Lo = Tunguns ANOI JuRSI1 S m
— s 5— [T - Mmm_.\:mf_u_ H d
safied __q_ B ERUOY BP0 0HED TLAIYPUDA 13660 | 1w ateg o
O Jwnopasds wpaads] H n
a “u ajeuiplooa she iojsy abueys Jusoa =
R Y= d 150y CEh| H Dr.
" senadord abed pajuiy
wogebueia™x [[
] uogEbuUs|I Y
Ay O [] d !nm\uJ\.yu._.:.m %
1naany 001} WO o wes
e + H s dn [SHwunn - !'!u o ALY | —T o)
b Mo e O 0] oHT s waan [0 [0ok jen —of AqugypTy Ell
wavr~x O [] o e wen [[} Qo usisyEys
VeSO UsIBlITHS 7 VIO o BFE
R0 o AFes 1oEypTy
v I £ I [, n [o I 3 , g I L | 9 I 5 ¥ 3 z I L

Manual Page 4-1

4 Functions and function blocks

ibaLogic’s functions and function blocks are arranged in seven main groups in
order to keep it clear and easy to handle. To get to the functions list as shown be-
low, just click the ,Functions”-tab in the resource area.

E--E Basic Funclions

53 srithmet ibaLogic function block library
+- anthm i

--l:i type comersion The seven main groups of functions and function blocks
-] string are:

B bitsting

-] selection e Basic Functions

F-_] comparison

= (5] Basic Fes e Basic FBs

- Registesduttiplesser e Global Variables
EI[:J Edge Detection
#- Counter ¢ Global FBs and Macros

{1 TimedTime functions
{1 Anaiytio
#-2] Communication
-] Signal Processing
ChadOscilloscope - Multi channel Osslllossope ° Local DLLs
Ch¥2Analyzer Logical Analyzer
Oszeillosonpe : Oscilloscope

e Global DLLs

e Local FBs and Macros

Switch : Manual Switch Functions and function blocks which are recommended in
Slider : Manual Stider accordance to the IEC 61131-3 standard are marked with
showString : Show Sking Value a green icon:

| DatFiletirite : Dat File Write Bl EEl

o L atFileCleanup : Dat File Cleanup
= E:l Global Varables
| Iu?ﬁjmﬁm :-g"hamm) Additional functions and function blocks which are pro-
> IDETG"E“.!D*MTIN.' 9-EvalDelaTime vided by ibalLogic because they are useful and helpful are
Pl logic_Snline - 9 Online marked with a yellow icon:

B| logic_Unloded : g_Unlodeed __ __
logic_fcqRestadCount - g_sAcqRestadCount

----- {_J Global FBs and Macios

([0 @lobal DLLs
m Local FBs and Macios

-----] Local DLLs

© iba AG 2009 m

Page 4-2 Manual

4.1 Basic functions

4.1.1. Arithmetic functions

(=3 Basic Functions Overview of "Basic Functions", "arithmetic"
ED arithmetic

----- . acos: Function acos
..... [B asin : Function asin e asin sine arc of arg
----- . atan : Function atan
----- atan? : Function atan2

----- . cos: Function cos o atan2 tangent arc Of arg1 over argz
----- zosh : Function cosh

e acos cosine arc of arg

e atan tangent arc of arg

_____ B = : Function exp e (oS cosine of arg

""" fabs: Function fabs e cosh cosine hyperbolic of arg

----- fmod : Function fmod .

..... ['n: Function In e exp natural exponential e** of arg

""" [E) 'oa: Funstion log e fabs absolute value of arg (REAL)

----- . expt : Function expt . . .

..... [sin : Function sin e fmod floating point remainder of arg1 over
----- zinh : Function sinh argz (REAL)

""" [E) tan : Function tan e |In natural logarithm of arg

----- tanh : Function tanh
_____ B sart: Function sqrt e log logarithm base 10 of arg
----- frand : Functian frand

----- iabs : absolute integer value
..... [B] add : Function add e sin sine of arg
----- [B] mul: Function mul
----- [B] =ub : Function sub
..... [B div: Function div e tan tangent of arg
----- [B] med: Function mad

o expt exponentiation arg1 ** arg2

e sinh sine hyperbolic of arg

5153 type conversion e tanh tangent hyperbolic of arg
[#]-{_] string e sgrt square root of arg
g% ::I::;i e frand pseudo random number in the range
-5 somparison from 0 to arg
(-] BasicFBs e iabs absolute value of arg (INTEGER)
[]g 2:::: :;:hnljiﬂamg e add addition of arg1 plus arg2
(] Glabal bLLs e mul multiplication of arg1 by arg2
g t::: ;ﬁ_:nd Mactes e sub subtraction of arg1 minus arg2
o o div division of arg1 by arg2
e mod remainder of devision arg1/arg2

(arg = argument)

m © iba AG 2009

Manual Page 4-3

Source Arithmetic Functions Target o
No. Description, Example
Type Symbol Type
acos: cosine arc of < arg >
acas_1

i Result:= acos(arg);

1 LREAL {00 HTin out [0 LREAL | Examples: 1.57079= acos(0.0);
3.14159= acos(-1.0);

asin_1 asin: sine arc of < arg >
2 agfn " Result:= asin(arg);
LREAL Din out [LREAL |Examples: -1.57079= asin(-1.0);

1.57079= asin(+1.0);

atan_1 atan: tangent arc of < arg >
atan
3 - n 3 Result:= atan(arg);
LREAL in vt LREAL | Examples: 1.0000= atan(n/2.0);

1.2626= atan(n);

atanz_1 atan2: tangent arc of < arg1 > over
atan2 <ar92>

4 LREAL S A5] int
LREAL E|in2 L LREAL

Result:= atan2(argl,arg2);
Examples: 1.1071= atan2(n,n/2.0);

cos_1 cos: cosine of < arg >
coz

Result:= cos(arg);

5 -
LREAL {3.1415¢in out [LREAL | Examples: -1.0000= cos(n);
+1.0000= cos(2.0*n);

cogh_1 cosh: cosine hyperbolic of < arg >

cosh

6 : Result:= cosh(arg);
LREAL {40 HTin out[H LREAL | Examples: +27.3082= cosh(4.0);
+201.7156= cosh(-6.0);

exp_1 exp: natural exponential of < arg >
7 o Result:= exp(arg);
LREAL [in out 5 LREAL | Examples: +2.71828= exp(1.0);
+0.13533= exp(-2.0);
fabs_1 fabs: absolute value of < arg >
8 faf's Result:= fabs(arg);
LREAL {406 HTin out[§][4.06 LREAL | Examples: +4.06= fabs(-4.06);

+3.89= fabs(+3.89);

fmod: floating point remainder of < arg1 >
fmod_1 over <arg2>
fmod

9 LREAL 56759 4] ind
: LREAL

Result:= fmod(arg);

Examples:
+1.6789=fmod(5.6789,2.0);
+1.862= fmod(+3.862,2.0);

© iba AG 2009 m

Page 4-4 Manual

No Source Arithmetic Functions Target Description. Example
’ Type Symbol Type P ! P
In_1 In: natural logarithm < arg >
In Result:= In(arg);

i LREAL {z.7132¢{]in out [H LREAL |Examples: +1.00= In(2.71828);
-4.00= In(0.01831);

log: Logarithm base 10 of < arg >

log_1
11 log Result:= log(arg);
LREAL [in out [LREAL [Examples: +1.00= 10g(10.0);
-4.00= 10g(0.0001);
axpt_1 expt: exponentiation < arg1 >**<arg2>
expt

Result:= expt(argl;arg2);

12 | LREAL —[Fa__pjint

. out [H LREAL | Examples: +125.0= expt(5.0,3.0);
any no.
! EIE B +4.00= expt(16.0,0.5);
sin_1 sin: sine of < arg >

13 Si"f Result:= sin(arg);
LREAL [in out [} LREAL |Examples: +1.00= sin(n/2.0);

-0.8414= sin(-1.00);

sinh_1 sinh: sine hyperbolic of < arg >

zinh Result:= sinh(arg);

LREAL J-1.5708H]in out [LREAL [Examples: -2.3013= sinh(-n/2.0);
+2.3013= sinh(+n/2.0);

14

tan_1 tan: tangent arc of < arg >

15 tan Result:= tan(arg);
LREAL {0.7a5ad{T]in out [LREAL |Examples: +1.00= tan(+n/4.0);
-1.00= tan(-n/4.0);

tanh_1 tanh: tangent hyperbolic of < arg >

tanh Result:= tanh(arg);
LREAL M in out [H [0.7615] LREAL |Examples: +0.76159= tanh(1.00);
-0.99627= tanh(-n);

16

sqrt_1 sqrt: square root of < arg >

17 sqrt Result:= sqrt(arg);
LREAL 8.0 HTin out [N LREAL |Examples: +3.00= sqrt(9.00);
+1.4142= sqrt(2.00);

frand: generates a pseudo random number
frand_1 in the range from 0 to < arg >
frand

LREAL [0 |[@in ot @Ho0711— LREAL

18

Result:= frand(arg);
Examples: +0.07116= frand(1.00);
+0.92457= frand(1.00);

ELI © iba AG 2009

Manual Page 4-5

Source Arithmetic Functions Target s
No. Description, Example
Type Symbol Type
be 1 iabs: Absolute value of < arg > (INT/ DINT)
iabs_
1 iabs Result:= iabs(arg);
DINT/INT —{-222 HTin out @222 INT/DINT | Examples: +822= iabs(-822);
+342= iabs(+342);
add_1 add: addition of arguments arg1 + arg2
add
- Result:= add(argl,arg2);
20 225 22' ';Ei g::; out [J [-1404 any no. |Examples: -1404= add(-702,-702);
' - +5.27= add(5.00,0.27);
- mul: multiplication of arguments arg1 *
mu
— arg2
21 any no. 702 int Result:= mul(argl,arg2);
any no. 70z] inz 2ut [any no. Examples: 492804= mul(-702,-702);
+1.350= mul(5.00,0.27);
sub_1 sub: subtraction of arguments arg1 - arg2
sub
- Result:= sub(argl,arg2);
22 g% 22' %g::; aut [[-70= any no. |Examples: -708= sub(-702,6.04);
' : +4.73= sub(5.00,0.27);
div_1 div: division of arguments arg1/arg2
div
- Result:= div(argl,arg2);
2 2:§ 28' %g ::; out [l [-224 any no. |Examples: -234= div(-702,3.26);
' ' +18.51= div(5.00,0.27);
mod: remainder of division (Modulo)
:Z:J arg1/arg2
24 | INT/DINT Jz6 H]in Result:= mod(argl,arg2);
INTDINT 5z ° INT/DINT | ¢ amples: -1= mod(-26,5):
+4= mod(326,7);
Remark:
Functions in accordance with IEC are marked green, additional functions, provided by iba are marked
yellow
LREAL FABS(ARG); absolute value of LREAL-numeral arg (IEC-functionname is "ABS")
DINT IABS(ARG); absolute value of DINT-numeral (IEC-functionname ist "ABS")

© iba AG 2009 EL l

Page 4-6 Manual

4.1.2. Type conversion

Overview "Basic Functions, Type Conversion"
There are the following groups of converting func-
tion blocks available:

=1 i_j Basic Functions
[#-{27] arithmetic
= 1......] type conversion
=0 convert bool e Convert BOOL

1 bool_to_int : convert bool to int

e Convert INT

bool_te_dint : convert bool to dint
bool_te_udint - convert boaol te udint ° Convert DINT
@ bool_te_dword : convert boal to dward
@ bool_te_real : convert bool to raal

@ bocl_te_lieal © convert boal to Iraal
) tool_to_time : convert bool to tima
@ bool_to_string : conwar bool fo slring L Convert REAL

[F] bits_to_int : conwert 18 bits to int e Convert LREAL

:''I conwen int
] wonvert dint e Convert TIME

] conwvert udint
] convert dword
£ convert real e Convert data structure
i) conver ireal
] conver fime

e Convert UDINT
e Convert DWORD

¢ Limiting converter

i) limiting conwerder
{7 scaling converter

g O e e R e O R e R e R =

{27] conwert data structure

4.1.2.1. Rules for conversion

If variables and function blocks are to be connected in the program, ibalLogic
checks the compatibility of data types automatically. If different data types are
involved, usually a converter function is required and ibaLogic offers to enter one.
Furthermore, the following rules for conversion apply:

Q All signed integer operations are computed with 32-bit DINT accuracy.

a If required, non-STRING values will be automatically converted into STRING,
except data of type ARRAY.

a Standard functions are used for conversion. The name of the function de-
rives from <source type>_to_<target type> (see examples).

Qa For target type BOOL the input value is coverted in "FALSE" if the input value
is 0, 0.0, 16#0 or T#0m:s. Else it's converted in "TRUE".

Q DINT, UDINT and DWORD conversions are created with a copy of the cur-
rent 4-byte date (32 bit).

Q REAL to DWORD conversions are created with a copy of the current 4-byte
date (32 bit).

Q LREAL to DWORD conversions are created like REAL to DWORD, but LREAL
is first converted in REAL.

Q The conversion of REAL/LREAL in DINT/UDINT is done by a numeric compu-
tation, assuming that the permissible limits of value range are not violated.

a For data type "TIME" it is assumed that the input value "1" or "1.0" is given
in the unit "second"

QO Aspecial function "TRUNC" converts LREAL to DINT without rounding.

m © iba AG 2009

BOOL INT DINT UDINT
BOOL N/A bool_to_int bool_to_dint bool_to_udint
INT int_to_bool N/ZA int_to_dint int_to_udint
DINT dint_to_bool dint_to_int N/ZA dint_to_udint
limit_dint_to_int limit_dint_to_udint
UDINT udint_to_bool udint_to_int udint_to_dint N/A
limit udint_to_int | limit udint_to dint
DWORD dword_to_bool dword_to_int dword_to_dint dword_to_udint
REAL real_to_bool real_to_int real_to_dint real_to_udint
limit_real_to_int limit_real_to _dint | limit_real_to_udint
LREAL Ireal_to_bool Ireal_to_int Ireal_to_dint Ireal_to_udint
limit _Ireal_to_int | limit_lIreal _to dint | limit _lreal_to udint
trunc
TIME time_to_bool time_to_int time_to_dint time_to_udint
STRING NZA N/ZA (atoi) N/ZA
Bits N/A bits_to_int N/A NZA
DWORD REAL LREAL TIME
BOOL bool_to_dword bool_to_real bool_to_Ireal bool_to_time
INT int_to_dword int_to_real int_to_lreal int_to_time
DINT dint_to_dword dint_to_real dint_to_lIreal dint_to_time
UDINT udint_to_dword udint_to_real udint_to_lIreal udint_to_time
DWORD N/A dword_to_real dword_to_Ireal dword_to_time
REAL real_to_dword N/ZA real_to_lIreal real_to_time
LREAL Ireal_to_dword Ireal_to_real N/ZA Ireal_to_time
limit Ireal to real
TIME time_to_dword time_to_real time_to_lreal N/A
STRING N/A (atof, atofFmt) N/A N/ZA
Bits N/A N/ZA N/ZA N/ZA
STRING bits char
BOOL bool_to_string N/ZA N/ZA
INT int_to_string int_to_bits N/A
DINT dint_to_string N/ZA N/ZA
UDINT udint_to_string N/A N/A
DWORD dword_to_string N/ZA dword_to_char
REAL real_to_string N/ZA N/ZA
LREAL Ireal_to_string N/A N/A
TIME time_to_string N/A N/ZA
STRING NZA N/ZA N/ZA
Bits N/A N/A N/A
For target type "STRING" the input values are converted as follows:
Q "FALSE" or "TRUE", for source type BOOL
Q Decimal row of characters (e.g. "-1234" or "123.456") for source types INT,
DINT, UDINT, REAL or LREAL.
Q Hex sequence of characters (e.g. "16#56AF3") for source type DWORD.
Q Time sequence of characters (e.g. "T#5m35s5200ms") for source type TIME
© iba AG 2009

Manual

Q When a datatype of a large value range should be converted into a
datatype with a smaller value range, a limiting converter is provided (of-
fered) by the program automatically.

Table of conversions

Page 4-8 Manual
4.1.2.2. General type converting functions
No. Source Type Conversion Target Description, Examples
Type Symbol Type
Example: bool_to_int Convert BOOL
INT
baol_to_int_1 DINT EOO:_tO_idr!tZ -II:-AIZESEE=> 16
oo UDINT ool_to_dint: =>0;
i DWORD | Pool_to_udint: TRUE => 1;
S00L JTRUE _Hin eut REAL bool_to_dword: TRUE => 16#1;
LREAL bool_to_real: TRUE => 1.0;
bool_to_lreal: FALSE => 0.0;
TIME bool_to_time: TRUE => T#1s;
STRING | bool_to_string: TRUE => TRUE;
Example: int_to_dword Convert INTEGER
BOOL
_ DINT int_to_bool: 446 => TRUE;
:::—:z—:xz:jj UDINT int_to_dint: 446 => 446;
—— DWORD int_to udint: 446 => 446;
INT g e el | KELAELE REAL int_to_dword: 446 => 16#1BE;
int_to_real: 446 => 446.0;
LREAL int_to_Ireal: 446 => 446.0;
TIME int_to_time: 446 => T#7m26s;
STRING | int_to_string: 446 => 446;
Convert Double INTEGER
£ le: di : BOOL
xample: dint_to_time INT dint_to_bool: 842 => TRUE;
prye— UDINT d!nt_to_lnt': 842 => 842;
= DWORD | dint_to_udint: 842 => 842;
—— dint_to_dword: 842 => 16#34A,;
DINT = ol i LITREE':LL dint_to_real: 842 => 842.0;
dint_to_lreal: 842 => 842.0;
TIME dint_to_time: 842 => T#14m2s;
STRING | dint _to_string: 842 => 842;
Example: udint_to_lreal BOOL Convert Unsigned Double INTEGER
INT | ydint_to_bool: 761 => TRUE;
Wit {19 el i DINT udint_to int: 761 => 761;
udint_to_lreal - -
—— DWORD | udint_to_dint: 761 => 761;
UDINT =1 g ot REAL udint_to_dword: 761 => 16#2F9;
LREAL udint_to_real: 761 => 761.0;
TIME udint_to_lreal: 761 => 761.0;
STRING | udint_to_time: 761 => T#12m41s;
udint_to_string: 761 => 761;
Convert Double WORD
. BOOL
Example: dword_to_string INT dword_to_bool: 16#20 => TRUE;
DINT dword_to_int: 16#20 => 32;
dlvanEL . shing UDINT | dword_to_dint: 16#20 => 32;
DWORD dniord_to_string REAL | dword_to_udint: 16#20 => 32;
{16720 Fllin out LreaL | dword_to_real: 16#20 => 4.48416E-04;
dword_to_lreal: 16#20 => 4.48416E-04;
TIME dword_to_time: 16#20 => T#3.2ms;
STRING 16#20 => 16#20;

dword_to_string:

© iba AG 2009

Manual Page 4-9

No. Source Type Conversion Target DescriptionExamples
Type Symbol Type
Convert REAL
Example: real_to_udint BOOL
: INT real_to_bool: -3.0 => TRUE;
—— DINT reaI_to_lr!t: -3.0 => -3;
real To_adint UDINT real_to_dint: -3.0 => -3;
REAL Min out DWORD real_to_udint: -3.0 => 4294967294;
real_to_dword: -3.0 => 16#C0400000;
LREAL real_to_Ireal: -3.0 => -3.0;
TIME real_to_time: -3.0 => T#-3s;
STRING | real_to_string: -3.0 => -3.0;
Example: trunc (LREAL zu
DINT ohne Runden) BOOL Convert LREAL
INT Ireal_to_bool: 0.0 => FALSE;
— DINT Ireal_to_int: 504.3 => 504;
frunc UDINT | Ireal_to_dint: 1.6 => 2;
=4z Hhn °“‘§ 504 DWORD | Ireal_to_udint: 504.3 => 504;
LREAL REAL Ireal_to_dword: 504.3 => 16#43FC2666;
Ireal_to_real: 504.3 => 504.3;
TIME Ireal_to_time: 504.3 => T#8m24s300m:s;
STRING | real_to_string: 504.3 => 504.3;
TRUNC | trunc: 1.6 => 1;
Example: time_to_Ireal Convert TIME
BOOL
time_to_lraal_t INT time_to_bool: T#1m => TRUE;
time_to_lreal DINT |time_to_int: T#1m => 60;
—{#m Fhin out UDINT | time_to_dint: T#-25s500ms => -3;
time to udint: T#1s => 1;
TIME DWORD | e to_dword: T#1m => 16#927C0;
REAL time_to_real: T#1m => 60.0;
LREAL time_to_lreal: T#10.5ms => 0.0104;
STRING | time_to_string: T#1m => T#1m;
Example: bits_to_int
Convert 16 bits to int
bits_ta_int_1
bits_ta_int bits_to_int:
bitd bit0 = TRUE
] bt bit1 = FALSE
—pti bit2 = TRUE
—ptitz bit3 = FALSE
—p it bit4 = TRUE
_g e bit5 = TRUE
9 T itr INT bit6 = TRUE
BOOL o bite sut [0 bit7 = FALSE = 10613
] bita bit8 = TRUE
— bit9 = FALSE
_D bit14 bit10 = FALSE
— T bit11 = TRUE
| bt 13 bit12 = FALSE
—] bt bit13 = TRUE
bit15 bit14 = FALSE
bit15 = FALSE

© iba AG 2009 m

Page 4-10 Manual

Source Type Conversion Target ..
No. Type Symbol Type Description, Examples
Example: int to bits
Convert int to 16 bits
int_to_bits_1 int to bits:
: o bit0 = TRUE
- bit1 = FALSE
itz bit2 = TRUE
bits bit4 = TRUE
bits bit5 = TRUE
10 INT bitf BOOL bité = TRUE
) bit? 10613 = bit7 = FALSE
A s bit8 = TRUE
bitd bit9 = FALSE
bit10 bit10 = FALSE
b0 bit11 = TRUE
bit12 bit12 = FALSE
i':j bit13 = TRUE
b:ﬂﬁ bit14 = FALSE
bit15 = FALSE
Example: dword to char
Convert DWORD in 4 chars STRING
jﬁ;:jj:jﬂ:[—* dword_to_char:
11 string_out [STRING
DWORD char_0 [H] (4 chars) @
16#zzEH] in char 1 E[R_ | 16#22645240 = R
char_2 [T El d
char_3 [,"—| 1

m © iba AG 2009

4.1.2.3. Limiting converters

E--a Basic Functions

D arithmetic

|_——_|D type conversion

D convert bool

D convert int

D convert dint

D convert udint

D convert dword

D convert real

D convert lreal

D convert time

ED limiting converter

----- limit_udint_to_int : limit udint to int
----- limit_dint_to_int : limit dint to int

----- limit_real_to_int : limit real to int

----- limit_lreal_to_int : limit Ireal to int

----- limit_dint_to_udint : limit dint to udint
- limit_real_to_udint : limit real to udint
----- limit_lreal_to_udint : limit Ireal to udint
----- limit_udint_to_dint : limit udint to dint
----- limit_real_to_dint : limit real to dint
----- limit_Ireal_to_dint : limit Ireal to dint
----- limit_lreal_to_real : limit Ireal to real

Manual Page 4-11

Overview "Limiting Converter"

Limiting converters are function blocks of a special kind as
they convert one data type into another and limit the out-
put value to the max. / min. limits of the target data type if
they are exceeded by the input value.

e Limit UDINT to INT
e Limit DINT to INT

e Limit REAL to INT

e Limit LREAL to INT

e Limit DINT to UDINT
e Limit REAL to UDINT
e Limit LREAL to UDINT
e Limit UDINT to DINT
e Limit REAL to DINT
e Limit LREAL to DINT
e Limit LREAL to REAL

© iba AG 2009

Source Limiting Converter Target o
No. Description, Examples
Type Symbol Type

Limit udint to int

[UDNT G INT | limit_udint_to_int: 577000 => 32767;
Limit dint to int

DINT - n eE[T .

2 INT 1jimit_dint_to_int: 577000 => 32767;
limit_real_to_int_1 . . .
Limit real to int

Fn o

: REAL INT limit_real_to_int: -216000 => -32768;
T Limit Ireal to int

4 LREAL @ —pn — g1 INT s real to_int: -216000 => -32768;
limit_dint_to_udint_1

S I . X Limit dint to udint

2 DINT UDINT 1 jimit_dint_to_udint: -216000 => 0;
I Limit real to udint

6 REAL " “HEETE] ypINT | limit_real_to_udint: 1*E+12 =>

4294967295;

s Limit Ireal to udint

7| LREAL r ol 1 UDINT et ireal to_udint: -1*E4+12 => 0;

Page 4-12 Manual

Source Limiting Converter Target —
No. Description, Examples
Type Symbol Type
I Limit udint to dint
8 UDINT - DINT | limit_udint_to_dint:2147483648
=>2147483647;
Limit real to dint
9 REAL DINT limit_real_to_dint: -2.2*E+09 => -2147483648;
e Limit Ireal to dint
10 IREAL o f PINT-Vlimit_Ireal_to_dint: 2.2*E+09 => 2147483648;
| Limit Ireal to real
11 | Reaw (=B edbmmEsE] gl | .
limit_Ireal to_real: 1*E+45 =>
3.402823466*E+38

m © iba AG 2009

Manual Page 4-13

4.1.2.4. Scaling converters
No. Source Scaling Converters Target Description, Examples
Type Symbol Type
Scale_lreal_to_int
This function converts a LREAL value (e.g. a physical
quantity) into an INTEGER value (e.g. an analog
output) using a linear scaling.
scale_lreal_to_int: 4.6 => 15072
with —=10.0 => -32768 and +10.0 => 32767
in
i =1 l
i = |
. i |
LREAL s ot vz I N S '
LREAL - i il ! /
1 INT :;2753 gj; out [INT : // x (LREAL)
LREAL 0 gm] / >||0Ut|
INT FETOT vl yD L [

Implementation:
diff_x = x1 - x0;
if (diff_x <>0.0)
then
= (yl —y0) / diff_x;
b :=y0 - a * x0;

dout := a * in + b;

out := limit_lreal_to_int(dout);
else

set_valid(out, FALSE);
end_if;

Scale_int_to_lreal

This function converts an INTEGER value (e.g. an
analog output) into a LREAL value (e.g. a physical
quantity) using a linear scaling.
scale_int_to_Ireal: 16600 => 5.06615

mit -32768 =>-10.0 und 32767 => +10.0

n

: gn I
I & 1
I = |
INT — i i
INT —[Ee00 ST __: ______________ 7
[Boee | @ i
2 LREAL] E LREAL i =
INT A :] ‘;Iloutl
LREAL] e

Implementation:
diff_x = x1 - x0;
if (diff x <>0.0)
then
- y0) 7/ diff_x;
a * x0;
in + b;
else
set_valid(out, FALSE);
end_if;

© iba AG 2009 m

Page 4-14 Manual

4.1.2.5. Convert data structure

This function is used for exchange of data structures with external systems which
use more complex data structures than ibalLogic.

Source Data Structure Converters Target

No. Type Symbol Type

Description, Examples

Convert_collect

This function is used for collecting several
data elements of various or same types
(sourceX) and putting them together in one
mutual data structure (target). Up to 58 in-
puts (source 0...57) can be processed. Each
source input is overloadable, i.e. different
4 data types may be connected, including 4-
dimensional arrays.

Input parameters:

trigger (BOOL): The function will only be
evaluated if trigger = TRUE.

swap_mode (Array of BOOL): If a bit of this
array is TRUE, the data element at the corre-
sponding source input will be swapped (de-
BOOL pending on target system).

ARRAY offset (Array of UDINT): Byte offset per
STRING . :
ARRAY [ARRAYy | Sourcein the target structure (target);
1 ARRAY & ARRAY if = 0 the data element will be written right
ARRAY = UNTYPED behind the previous one.
UDINT length (Array of UDINT): Byte length per
UNTYPED

source in the target structure;

if = 0 the maximum length will be used.
mode_select (Array of DWORD): not used.
The index of these arrays (0...57) is assigned
to the source inputs.

start_offset (UDINT): Start address in the tar-
get structure, where the entries of the source
data should begin.

sourceX (untyped): Input data (X = 0...57)

Output parameters:

error_text (STRING): Status message
used_offset (Array of UDINT): Used offset per
source

used_length (Array of UDINT): Used length
per source

target (untyped): Target data structure

m © iba AG 2009

Manual Page 4-15

Source Data Structure Converters Target

No. Type Symbol Type

Description, Examples

Convert_split

This function provides the inverse function of
Convert_collect and works accordingly.

An input data structure (source) can be split up
into various data elements of different or same
types.

For dismantling and reading the data structure
correctly the position, length and type of the
included data elements must be known.

Input parameters:
trigger (BOOL): The function will only be evalu-
ated if trigger = TRUE.
swap_mode (ARRAY of BOOL): If a bit of this
array is TRUE, the corresponding data element
will be swapped (depending on source sys-
BOOL tem).
ARRAY offset (Array of UDINT): Byte offset per target
STRING |.
ARRAY mm=—— ARRAY | 1P the source structure (_source);
2 ARRAY 5 if = 0 the data element can be found right be-
ARRAY o ARRAY hind th .
ind the prvious one.

UDINT UNTYPED length (Array of UDINT): Byte length per target
UNTYPED in the source structure;
if = 0 the maximum length will be read.
mode_select (Array of DWORD): not used
The index of these arrays (0...57) is assigned to
the target outputs.
start_offset (UDINT): Start address in the
source structure, where the above mentioned
target data had been entered.
source (untyped): Input data structure

Output parameters:

error_text (STRING): Status message
used_offset (Array of UDINT): Used offset per
target

used_length (Array of UDINT): Used length per
target

targetx (untyped): Target data

© iba AG 2009 m

Page 4-16 Manual

4.1.3. String functions

Source String Functions Target ..
No. Description, Examples
Type Symbol Type
iy atoi: Converts STRING to INTEGER
atoi_ = = B
1 | sTRNG [E=— JPAwesm[z] pny | Result:= atoi(string);
Examples: 12= atoi("12.34%);
1234= atoi ("1234-Text");
stor 4 atof: Converts STRING to REAL
atof _ R
2 STRING {ZaaTed__Hilin out REAL Result:= atof(string);
Examples: 12.34= atof("12.34%);
12.34= atof("12.34-Text");
atofFmt: Converts STRING to REAL, beginning
tofhmisy at start index"idx"
atofFmt
3 STRING —ver=1z HJin . Result:= atofFmt(string, idx);
. _‘1.2
DINT 5 mis"" 5 REAL Examples:
1.2= atofFmt("Vers=1.2",5);
54 _32= atofFmt("a:=54.32",3);
UtcTimeToString: Converts a UTC-time con-
_ stant to a time-STRING
UtcT\meToStllr\E o - - -
4 UTC- Result:= UtcTimeToString(arg);
UDINT Time- Examples: "2001/08/10.11:05:49"= Utc-
String | TimeToString(997441549);
"1970/01/01.00:00:01"= UtcTimeTo-
String(1);
len: Length of a string
lan_1
5 len Result:= len(string);
STRING —{bissistein TedTin out [DINT | Examples:
17= len("Dies ist ein Text");
4= len("Text");
. left: Left part of a string, of a length of "I"
B (chars)
6 | STRING petl=iEr g oTRING | Result:= left(string, 1);
DINT Examples: "Dies is"= left("Dies ist
ein Text",7);
"Die"= left("Dies ist ein Text",3);
. right: Right part of a string, of a length of "I"
gt (chars)
7 | sTRING [EEEEET g oTRING | Result:= right(string, 1);
DINT Examples: "in Text"= right("Dies ist
ein Text",7);
"ext"= right("Dies ist ein Text",3);
mid_1 mid: Excerpt of a string of a length of "I"
Sid (chars) beginning at position "p"
 Dies ist ein Text]]in
8 STDFI{II\I'\ITG 5 01 out[H STRING Result:= mid(string,l,p):
DINT : ge Examples: T"es is"= mid("Dies ist ein
Text",5,3);
"ein"= mid("Dies ist ein Text",3,10);
concat_1
9 STRING soncat concat: concatenates two strings to one
_ [in au iezist ein Te STR'NG
STRING [zinTat Hinz ! O [otas izt ein Tex] Result:= concat(stringl,string2);

m © iba AG 2009

Manual Page 4-17

Source String Functions Target —
No. Description, Examples
Type Symbol Type
Examples: <"Dies ist ein Text"= concat
("Dies ist”,"ein Text");
"ABCD"= concat("AB","CD");
insert_1 insert: insert string "in2" in string "in1" at po-
— :';SI::‘ sition "p"
STRING Zelet _HA — . . .]
10 [stein][z out[Hf [Bies it ein Texd] Result:=insert(stringl,string2,p);
STRING [1@ STRING . _ _ . -
DINT Examples: Dies i1st eiln Text"= insert
("Dies Text","ist ein ",5);
"ABCDE"= insert ("AE","BCD", 1);
delete: delete "I' chars of a string, beginnig at
Tt position "p"
STRING bies et ein Texi{T in — = .
1 “oint 1 ou STRING | Result:= delete(string.1.p):
DINT E_______ 13- Examples: “Dies Text"= delete("Dies
ist ein Text",8,5);
"BCD"= delete("ABCDE",3,1);
— replace: replace "I" chars of string "in1" by
STRING replace "in2" beginning at position "p"
~[Dies ist ein Text] in))
12 | STRING g:nz out B STRING Result:= re.pl_ace(strlng.l,strlngz, 1,p);
DINT I—I_E;_ZIP Examples: "Dieser Text"= repla-
DINT ce("Dies ist ein Text", "er", 8, 5):
*ABXE"= replace("ABCDE","X", 2,3);
find: find the first position where any char
find_t of string "in2" matches chars in string "in1"
find
13 STRING Ciesistein Tad T int Result:= find(stringl,string2);
T Qe “HE 1 DINT . e s
STRING L Q2 Examples: 16= find("Dies ist ein
Text®, "X");
1= find("Dies ist ein Text", "exD");
Remark:
Functions in accordance with IEC are marked green, additional functions, provided by iba are marked
yellow

Values of integer variables must not be signed negativ (<0)

© iba AG 2009 EL i

Page 4-18 Manual

4.1.4. Bit-Shift functions and logical operations

Source Bit-Shift Functions Target o
No. Description, Examples
Type Symbol Type
" shl: Left shift of "in" by "n" MOD 32 bits,
zhl‘ zero-filled from right
1 D\IIDVIg'?D g:: out [DWORD |Result:= shl(in,n);
Examples: 16#D90= shl(16#D9,4);
16#180= shl(16#C,5);
e 4 shr: Right shift of "in" by "n" MOD 32 bits,
hr zero-filled from left
DWORD gin - - -
2 DINT B O~ t@[E#c | DWORD |Result:= shr(in,n);

Examples: 16#C= shr(16#180,5);
16#D9= shr(16#D90,4);

ror: right rotation of "in" by "n" MOD 32 bits

rar_1

ror

DWORD i
3 DINT b~ [16#FO0000CZ_]

Result:= ror(in,n);

DWORD | Examples:

16#F00000C2= ror(16#C2F,4);
16#F500000C= ror (16#CF5,8);

rol: left rotation of "in" by "n" MOD 32 bits
rel_1
ral

DWORD din i E
4 piINT B 18"

Result:= rol(in,n);

DWORD | Examples:

16#F50000C2= rol (16#C2F50000,8);
16#45678123= rol (16#12345678,12);

— and: Logical AND-operation of input variables

) and (DWORD / BOOL)
Any bit _remE L] int . ! dcint, in2) 3
TeRFFFD O @] DWORD/ [Result:= and(inl,in2,...in_n);
° T Y = To0L | Examples:16#80= and(16#180, 164FFFO,
Any bit 16#FOF0, 16#F0);
FALSE= and(TRUE,FALSE,TRUE) ;
o1 or: Logical OR-operation of input variables
= (DWORD / BOOL)

Any bit fTRUEE MO DWORD/

6 [FALSE @iz ot @[TRUE] BOOL Result:= or(inl,in2,...in_n);

Any bit TEE e Examples: TRUE=or (TRUE, FALSE, TRUE) ;
16#F1F3=0r (16#180,16#F0F0,16#3) ;
xor: Logical XOR-operation of input variables

A bit o (DWORD / BOOL)

ny o1 [EF@n Mo
7 %gm; ot [[16#F073] D\é\gogl?/ Result:= xor(inl,in2,...in_n);

Any bit Examples: FALSE= xor(TRUE,TRUE);
16#F073=x0r (16#180,16#F13) ;
not: Logical NOT-operation (negation) of input

HOIJ variable (DWORD / BOOL)
8 Any bit ATUE_ HAn cutd DWORD/ | pasult:= not(in);

BOOL Examples: FALSE= not(TRUE);

16#FFFFFE7F=not(16#180);

Remark:

The number of inputs of function blocks "AND", "OR" and "XOR" is free to be altered. To alter the number of
inputs double click on the function block and change the "In"-variable under I/O-connectors by entering the
desired number oder clicking the arrows up / down.

EL’ © iba AG 2009

Manual Page 4-19

4.1.5. Selection- and MIN-/ MAX-functions

Source Selection Functions Target o
No. Description, Examples
Type Symbol Type
sel_1 sel: selection (1 out of 2) with binary switch "G"
zel
BOOL —TruE Hi= out:= in0, if G = FALSE [0];

no,
Any type —[TedN1 HTino wtﬂ Any type [out:= inl, if G = TRUE [1];
Any type —{Tettrz Hint Result:= sel(G,in0,inl);

mux: selection (1 out of n) by DINT-selector "K"

mux_1
mus out:= in0, if K = 0;
BOOL Jz— HOk out:= inl, if K = 1;
Any type DinD out:= 1In2 if K=2:
..... [1A outE[152 Any type T ”
[Es__ |[@inz out:= inn, if K = n;
An;/"ﬂ./pe [374__ |[Qin3 out:= last value, If K >3;
Result:= mux(K,in0,inl,in2,in3);
e max: maximum value of inputs (1..n)

max

Any type [in1
..... [in2 OU‘H Any type
Any type —[18#C___ Hin3

Result:= max(inl,in2,inn);
Examples:

16#1F= max(16#2,16#1F,16#C);
15.3 = max(12.3,7.8,15.3);

min: minimum value of inputs (1..n)

in_1
Anv £ 2:: Result:= min(inl,in2,inn);
ny type D int Examples:
= . out _?'_8 -
Ay type {7e_ Hhine ANY BYPe | 1 6o min(16#2, 1641F, 164C) ;
7.8 = min(15.3,7.8);
limit: linitation of input variable "in" between
"mn" (minimum) and "mx" (maximum)
limit_1
limit Result:= Limit(in,mn,mx);
ﬁny type Jsg HAmn A Examples:
AEV:VF’: g'r:x °”‘H nytpPe |15 9 = 1imit(12.9,8.9,15.3);
yyp ' 15.3 = 1imit(17.6,8.9,15.3);

8.9 = 1imit(2.0,8.9,15.3);

Remark:

- "Any type": any elemental datatype BOOL/INT/DINT/UDINT/DWORD/REAL/LREAL/TIME/STRING

- The number of inputs of function blocks "mux", "max" and "min" is free to be altered. To alter the
number of inputs double click on the function block and change the "In"-variable under I/0-connectors

by entering the desired number oder clicking the arrows up / down.

© iba AG 2009 m

Page 4-20 Manual

4.1.6. Comparison functions

Source Comparison Functions Target s
No. Description, Examples
Type Symbol Type
gt: "greater than" (1 out of n)
at_1
at TRUE, if inl > in2 > in3;
Any type 153 _ Hin FALSE, if inl <= in2 <= in3
----- {129 HAin2 °“*H BOOL |Result:= gt(ini,in2,in3);
Anytype 88 Hiin Examples: TRUE= gt(15.3,12.9,8.9);
FALSE= gt(15.3,6.8,8.9);
ge: "greater than or equal" (1 out of n)
ge_1
ge TRUE, if inl >= in2 >= in3;
Any type 155 HOint FALSE, if inl < in2 < in3
-----] in2 °”tﬁ_ BOOL | Result:= ge(inl,in2,in3);
Any type 83 Hinz

Examples: TRUE= ge(15.3,15.3,8.9);
FALSE= ge(15.3,15.3,18.6);

eq: "equal" (1 aus n)

an_1 TRUE, if inl = in2 = in3;

&9 FALSE, if inl <> in2 <> in3
ﬁny:ype g::; ok BooL |Result:= eq(inl,in2,in3);
ny type 4 1 K

Examples:
TRUE= eq("Text 1", "Text 17);
FALSE= eq(15.3,15.3,18.6);

le: "less than or equal" (1 out of n)
le_1

le TRUE, if inl <= in2 <= iIn3;
Any type {153 Hin FALSE, if inl > in2 > in3
----- o228 [Ain2 °”tlﬂ_ BOOL |Result:= le(ini,in2,in3);
Any type ZT _ Hin3 (ind, n2. In3):

Examples: TRUE= 1e(15.3,22.8,28.7);
FALSE= 1e(15.3,8.9,6.8);

It: "less than" (1 out of n)

! TRUE, if inl < in2 < in3;
Any type Fint FALSE, if inl >= in2 >= in3
_____ ez Hinz out gooL [|Result:= It(inl,in2,in3);
Any type HzE7 __ HOinz Iﬂ Examples:

TRUE= 1t(15.3,22.8,28.7);
FALSE= 1t(15.3,15.8,28.7);

ne: "not equal" (1 aus 2)

ne_1 TRUE, if Inl <> In2;

ne FALSE, if inl = in2
Any type HTedhit Fllint Result:= ne(inl,in2);
Any type [Tethiz Hinz BOOL Examples:

TRUE= ne("Text 1","Text 2%);
FALSE= ne(15.3,15.3);

Remark:

- "Any type": any elemental datatype BOOL/INT/DINT/UDINT/DWORD/REAL/LREAL/TIME/STRING

- The number of inputs of function blocks "gt", "ge" "eq", "le" and "It" is free to be altered. To alter the num-
ber of inputs double click on the function block and change the "In"-variable under I/O-connectors by en-

tering the desired number oder clicking the arrows up / down.

m © iba AG 2009

Manual

4.2 Basic FBs (basic function blocks)

Function blocks (FBs) have as many in- and output parameters as needed, which
are clearly defined. Furthermore, they can use internal variables, i.e. they have a
memory. A counter is a good example for a function block. The counter can be
used by one task or by several tasks as well and with a different data set in each

case.

[+ ‘{_}.] Basic Funclions
=] BasicFes

20 Registertultipleser
+ __] Edge Detection
+ __| Counter
+ ;] TimedTime funclions
[+ __| Anahtic
iy
¥

;| Communication
__j Signal Processing
Chatscilloscope : Muli channel Ceeillogoope
ChazAnalyzer : Logical Analvzer
Ozclllozcope | Oscilloseape
Siiteh : Manual Switoh
Slider: Manual Slider
showString : Shows String Value
D atFileWWiite : Dat File W@hite
DatFileCleanup : Dat File Cleanup
#F-{z] Global Variables
2] ¢lobal FBs and Macios
] &lobal Dills
4] Local FBs and Macros
{1 Lecal DlLLs

4.2.1. Register / Multiplexer

Overview "Basic FBs", function blocks

Page 4-21

iba's basic function blocks are devided into the fol-
lowing groups:

Register/Multiplexer
Edge Detection
Counter

Timer/Time functions
Analytic
Communication
Signal Processing

Debug and helping function blocks
Multi channel Oscilloscope
Logical Analyzer
Oscilloscope
Manual Switch
Manual Slider
Show String Value
Dat File Write
Dat File Cleanup

Registers are storage elements. If the control input "set" is TRUE the value of input
"value" will be stored and forwarded to the output. Any alternation of the input
value will only be taken as long as "set" is TRUE. If the input "reset" is TRUE, the
output will be resetted. The control input "set" dominates "reset". (see timing-

diagram below)

A

out li

value I—I I—‘

|
-

reset

— L]
set I_I_I_l I-I l—l

LC—

[
»

time (ms)

Fig. 69 Timing diagram of register / multiplexer function blocks

© iba AG 2009

Page 4-22 Manual

4.2.1.1. Register function blocks

Source Register Function Blocks Target

No. Description, Examples
Type Symbol Type P P
RegisterBool 1 RegisterBool: Store data type BOOL
RegisterBool
BOOL [value Result:= RegisterBool(value, set, re-

~[FALSE_}
1 | BOOL FalsE st owBHTRE - BOOL |sep):
~[fratse |

BOOL FALSE H reet Examples: see Timing-Diagramm

2:3:;‘2:::—1 Registerint: Store data type INT
INT Sz Hvahe Result:= RegisteriInt(value, set, re-
2 BOOL ~{FALsE st out@[o] INT set):
BOOL _,W!_D reset ?

Examples: see Timing-Diagramm

Feg i RegisterDInt: Store data type DINT
Registerlint
DINT 72 Hwalue Result:= RegisterDInt (value, set,
3 BOOL El et out [DINT reset) -
BOOL JFALSE Hreset i

Examples: see Timing-Diagramm

RegisterDint_1 RegisterUDInt: Store data type UDINT
RegisterlDint
UDINT D value Result:= RegisterUDInt(value, set,
4 BOOL _[FRuE Hiset out[H UDINT | reset);
BOOL ratse Horesst Examples: see Timing-Diagramm

Eeqj=eTiITIRg RegisterDWord: Store data type DWORD
RegisterDifard
DWORD D value Result:= RegisterDWord(value, set,
5 BOOL {FALSE [set out[H DWORD | reset);
BOOL {TRUE _ HJreset Examples: see Timing-Diagramm
RegisterReal_1 RegisterReal: Store data type REAL
FegistarReal
REAL Svatus Result:= RegisterReal (value, set,
6 BOOL fFarse 1hsst outiH REAL | reset);
BOOL JFarsE Hojresst Examples: see Timing-Diagramm
RegistarLReal_1 RegisterLReal: Store data type LREAL
RegisterLReal
LREAL [@ez Hjvaiue Result:= RegisterLReal (value, set,
7 BOOL {TRUE__ Hset out @53 LREAL reset);
BOOL {7RUE _ Hjreset Examples: see Timing-Diagramm
Eegfzer:mej RegisterTime: Store data type TIME
egisteriime
TIME —[TwdEs __ Hvalue Result:= RegisterTime (value, set,
8 BOOL ==t out [0 TIME reset);
BOOL [FALSE || reset

Examples: see Timing-Diagramm

Riegiste String_1 RegisterString: Store data type STRING
Registerstring
STRING Dieser Tesxt | [T value Result:= RegisterString (value, set,
9 BOOL S FALSE HO et owt@[] STRING reset);
BOOL [TRUE LT reset 7

Examples: see Timing-Diagramm

EL’ © iba AG 2009

Manual Page 4-23

4.2.1.2. Shift-register and FIFO function blocks
Shift-register and FIFO
Source . Target -
No. Tvoe Function Blocks Tvpe Description, Examples
yp Symbol yp
shiftRe gister_1 shiftRegister: Store data type REAL/LREAL in a
shiftRegister LREAL | shift-register t0...t8
0 EHoeE7a8 -
N I | e LREAL | shift, if “set” = TRUE
& @ [aa 1 LREAL t0:= value(t[n])current cycle
1 t4 [[0 426770 LREAL |tl:= value(t[n-1]) last cycle
i CEEIED t2:= value(t[n-2])
15 [[0 z0o017 LREAL -=
LREAL <0837aza Hhwalue « [H[02%50 | LREAL | -------
LT | CEETEETIN LREAL |t8:= value(t[n-8])
L BOOL ([with "n" = task cycle
FirstinFirstOut: Store data type REAL/LREAL in a
FIFO-register
E—— In each task cycle the FIFO-register
FirstinF irstut is shifted by one position. The input
9 LlI)RII;\lATL _30503523 a‘i"r‘“* - LREAL "value™, multiplied by "factor” is
LREAL :lfam, stored in the shift-register.
Count: length of FIFO-registers
Value: input value
factor: multiplier for input "value"
sr: RS-Flip-Flop (bistable set-dominant)
sl
—> ql
r -—_
—
it Truth table
BOOL {TRUE HOs' | e Input Values Output
S pooL {mE—1g. “HMEE 1 BOOL) r ql
0 0 gl
0 1 FALSE
1 0 TRUE
1 1 TRUE
rs: RS-Flip-Flop (bistable reset-dominant)
sl
ql
r -
—
i=_1 Truth table
(=3
BOOL TRUE _ HO= . e Input Values Output
4| pooL fe o "HEE=E 1 BOOL o1 r a1
0 0 gl
0 1 FALSE
1 0 TRUE
1 1 FALSE

© iba AG 2009 ELI

Page 4-24 Manual

Shift-register and FIFO
Source .
No. Tvoe Function Blocks
yp Symbol

Target

Type Description, Examples

Delay: Delay value forwarding

The output value "out" follows the in-
put value "value"™ with a delay of the
time equivalent to the number of cy-
cles, given at input "Count™.

Delay_1 e /-/\/\

Calay ! .

DINT =[500__Hf count s
> | Anytype E__Havelue B = Anytype /_/\/\
out |

Count aa t

The function block has a limited mem-
ory capacity which applies when using
the data type ARRAY ("Value® and
"out™). If the number of array ebte-
ments exceeeds 64 then the range of
delay values (65536) will be reduced
accordingly.

move: Feedback register

The output value "out"™ 1is an exact
copy of the input value "in". This
function block is used to define a
starting point for evaluation inside a
6 Any type 082 HOin cvt@H08z = Any type |closed gIlogp. The function block grants
that the evaluation of the loop always
starts at the same place in terms of
signal flow for the purpose of a clear
evaluation order.

move_3
mave

m © iba AG 2009

Manual Page 4-25

4.2.2. Edge Detection

Edge Detection Function
Source
No. Tvpe Blocks
yp Symbol

Target

T Description, Examples

r_trig: Rising Edge Detector

If rising edge at input "clk"
(0->1)output "g" is set on TRUE for
one task cycle.

IT the input signal clk is TRUE in the
moment of switching on the system, the
R function block generates an impulse

i_trig (output q = TRUE for one task cycle).
BOOL {TRUE }flck a[EHFALSE] BOOL .

TA TA time (ms)

f_trig: Falling Edge Detector

IT falling edge at input "clk"
(1->0)output "g" is set on TRUE for
one task cycle.

IT the input signal clk is FALSE in
the moment of switching on the system,
ot the Tunction block generates an im-
e pulse (output q = TRUE for one task

BOOL [FAsE @k 1 BooL |cycle).
A

il S O

TA time (ms)

TA

© iba AG 2009 m

Page 4-26 Manual

4.2.3. Counter

Source Counter Function Blocks Target

No. Description, Examples

Type Symbol Type
ctu: Up-Counter
If input "cu" is TRUE the counter
value "cv" is incremented by one unit
per task cycle. When output "cv" has
matched the preset value '"pv", the
output "g" is set TRUE. Input "r" =
o 1 TRUE resets the counter.
u_
ctu A
4 BOOL FALSE Heu 1 BOOL !
BOOL [FALsE Hr
DINT i Hiev DINT ov.
cv
cu
r
A] time (ms)
ctd: Down-Counter

IT input "Id" is set TRUE the counter
value "cv" will be set to preset value
"pv'. When input "cd" is set TRUE the
down-counting starts by decrement of
one unit per task cycle. When the
counter value "cv" is <= 0 the output
"qQ" is set TRUE.

A

q
BOOL BOOL
BOOL
2 pv
DINT £5 ez DINT
cv
0

g A i
o PP

™ A time (ms)

w © iba AG 2009

Manual Page 4-27

Source Counter Function Blocks Target

No. Description, Examples

Type Symbol Type
ctud: Up-Down-Counter
I¥f input "cu" 1is TRUE the counter
value "cv" is incremented by one unit
per task cycle. When output "cv'" has
matched the preset value 'pv', the
ctud_1 output "qu" is set TRUE.
ctud (see sequence diagram "ctu'-FB)
BOOL —[FaLsE HTeu BOOL If input "Id" is set TRUE the counter

au
gggt ~TRUE = BOOL value "cv" will be set to preset value
~[FALSE " o "pv". When input “cd" is set TRUE the

?)?I\CI)TL g:i o DINT down—coEJnting starts by decrement of
one unit per task cycle. When the

counter value "cv" is <= 0 the output

"qd™ is set TRUE.

(see sequence diagram "'ctd"-FB)

Input "r" = TRUE resets the counter.

|

4.2.4. Timer / Time functions (Zeitfunktionen)

Source Timer Function Blocks Target .
No. Description, Examples
Type Symbol Type
tp: Pulse Timer (pulse extention)
The rising edge at input "in" will
cause the output "q" to be set on
TRUE for the pulse time of "pt'. As
long as the pulse time is running
output "g" cannot be resetted. Output
"et" shows the lapsed time.
tp_1
tp A
BOOL fFase _Hain « BOOL
TIME e et ot @ [Pz nivMe | @
pt-
et

Cptto tptt toptt time (ms)

© iba AG 2009 m

Page 4-28 Manual

Source Timer Function Blocks Target o
No. Description, Examples

Type Symbol Type
ton: On-Delay
The rising edge at input "in" starts
the delay time counter for the time
"pt". After lapse of "pt" the output
"q" is set TRUE until input "in" is
FALSE. The output "qg" will not be set
TRUE if the actual time of "in" being
TRUE 1is shorter than the delay time
"pt.

ton_1 Output "et" shows the lapsed time.
ton

BOOL {TrRuE _ Hin 1 BOOL A

TIME T#i5= et et [[T#2500ms | TIME q
pt-
et
in

time (ms)

tof: Off-Delay
If input "in" is TRUE, the output "q"
is set TRUE.

The falling edge at input "in" starts
the delay time counter for the time
"pt". After lapse of "pt" the output
"g" is set FALSE. The output "g" will
remain unchanged if the actual time
of "in" being FALSE is shorter than

2?1 the delay time "pt".
BOOL {rase _ [in s BooL |Output “et" shows the lapsed time.
TIME {T#E=z00me HOlpt et [l [T#osm0me] TIME

»
L

et S TPt time(ms)

@ © iba AG 2009

Manual Page 4-29

Source Timer Function Blocks Target i
No. Description, Examples
Type Symbol Type
splitUtcTime: segmentation UTC-time
This function block converts the iIn-
i 1 put "tm" (given as UTC-time in sec-
sEIitUtcTime_ onds)to the output variables year,
sysTime [[2aGae3800 | UDINT | month, day, hour, minute and second.
vear (@ [2000] DINT UTC-time 1is the number of seconds
"mdb—— PN |japsed since 1970-01-01, 00:00:00
ay 3 - - -
4 UDINT {edeeasem0 jin hewr @6] DINT Examples:
minuteDlCI DINT _ - - -
reoont [DINT | t"= 13 01.01.1970/00:00:01
sEHE] DINT |tm= 2.592_000 31.01.1970/00:00:00
tm= 946_684 800 01.01.2000/00:00:00
equal to 30 years (60*60*24*365)
plus 7 leap days (60*60*24)
make UtcTime_1 makeUtcTime: generation of UTC-time
makelltcTime
DINT Em [This function block generates the
Bm; [][Ement UTC-time based on the inputs year,
[][@da -
5 DINT 6] Shewr m 5| [s0000] UDINT month, de-ly, hour, minute and second
DINT [| [Aminute Examples:
DINT [0][[second 01.01.2000/00:00:00 +tm= 946_684_ 800
0 I dst
DINT 08.06.2000/12:00:00 tm= 960_462_000
setUteTime_1 setUtcTime: Set UTC-time
setltcTime
UDINT —[gecsessss Htmin This function block sets the UTC-
6 BOOL _,W‘_Dsﬂ t tD UDINT time.
oltLosalTime.1 splitLocalTime: Splitting the local system time
UDINT _ _ _
DINT This function block converts the in-
DINT |put value "tm" (local system time
7 UDINT B DINT given in seconds)into the output_val—
- DINT ues year, month, day, hour, minute
i DINT and second plus the information about
: DINT daylight saving time (dst).
DINT

© iba AG 2009 m

Page 4-30 Manual

4.2.5. Analytic Functions

Source Analytic Function Blocks Target .
No. Type Symbol Type Description, Examples
MovingAverage: Cummulated average
Input value "Count" sets a number of
values to be used as a base for aver-
) age calculation of input value
Mw!"g’%gerag'&J "Value'. Output value "Size" reflects
MovingAvgerage
- the number of values used for average
DINT] Count Size [DINT lculati 0 I CEUll” i
1 Full I gooL |calculation. Output value u is
REAL Hvalue REAL |set TRUE if number of values to cum-
verag: [mulate is reached. Output value "Av-
erage”™ returns the cummulated aver-
age. Average calculation is done con-
tinuously. Input "Count™ can be al-
tered during operation.
Integral_1 Integral: Integrate value over time
Integral Output value "out" is the integral of
REAL Wl value Input "value” multiplied by "factor"
2 REAL REAL P plred by “Tactor
] factar aut [=
BOOL over time.
B reset "reset” = TRUE resets the output.
Derivativa_1 Derivative: Derivate value over time
Drarivative _ _
REAL Svaiue Output value "out™ is the derivate of
3 REAL D factor sut B REAL input "value"™ multiplied by "factor"
BOOL] reset over time.
"reset” = TRUE resets the output.
PIDT1Control: PIDT1-controller block
Universal PIDT1-controller with several modes of
operation as P-, |-, PI-, PIDT1-controller.
LREAL Functions:
::EEQ:: e Setting start value for integrator
LREAL = =] e Holding current value of integrator
LREAL : = e Precontrol value w
LREAL I o LREAL P
LREAL . g'w LREAL |e Control limits Il (low) and lu (up)
TIME 5 Sk LREAL) o
4 LREAL Tos A LREAL |® Proportional coefficient kp
1] s
TIME THo _31 LREAL |, Reset time tn
BOOL = BOOL o .
BOOL —enp BOOL |[e Control deviation reversible
BOOL =iy <cation of limit violati
BOOL o ¢ Indication of limit violation
BOOL T e Indication of control deviation
BOOL o
BOOL e Indication of controller output value
For more information please refer to chapter
4.2.9

!Ll © iba AG 2009

Manual Page 4-31

Source Analytic Function Blocks Target .
No. Description, Examples
Type Symbol Type
PT1: Delay function of 1 order
The input value 'x' is dynamically delayed by com-
putation with smothing time constant 't1'. The
result is copied on the output 'y'.
PT1.1 Implementation:
5 LREAL LREAL [t1_tO0 := time_to_lreal(tl) /
TIME ER— _t0 := _to_
T#0s t | C— time_to_lreal(EvalDeltaTime);
y 1= 1.0 / (1.0 + t1_t0) *
(X + t1_t0 * y old);
y old = vy;
Ramp: Ramp function block
The ramp function block provides two different
ramps, manual and automatic mode of opera-
LREAL tion.
LREAL oo Functions:
LREAL Jb -4 LREAL o
LREAL - = LREAL |° Reference value limitation (II'and 'lu)
LREAL 0 mE . .
6 LREAL i - BOOL |e Going to new reference value via ramp
1 ra BOOL
588:: A BOOL |® Setting reference value
BOOL :g:; e Indication of limit violation
BOOL For more information please refer to chapter
4.2.9

© iba AG 2009 m

Page 4-32 Manual

4.2.6. Communication Functions

This group of function blocks is dedicated to the communication by serial inter-
face 3964R protocol (DUST) and TCP/IP.

Communication Function

No. S1(_)ur:e Blocks T-Iz:\rgzt Description, Examples
yp Symbol yp
Recv_3964: Receiving a 3964R-telegram (admin-
istrativ function block)
This function block should always precede a
Recy_3964_1 "Read 3964 xxx'-function block.
—— BOOL If input "receive" is TRUE the function block tries to
new_tel BOOL receive a telegram from the 3964R-driver. The
- output "init_ok" is set TRUE if the 3964R-driver has
tal_length DINT — LT
1 BOOL - been properly initialized. If a new telegram has
- RS e BOOL been received successfully the output "new_tel" is
B SE BOOL set TRUE. The output "tel lentgh" returns the
error_langth BOOL length of the recceived telegram in bytes. The er-
armor_HAK BOOL ror outputs "error..." are set TRUE if the corre-
error_BCEC BOOL spondlng error occurred: timeout, synchroniza-
tion, telegram length (too long), NAK or BCC.
Send_3964: Sending a 3964R-telegram (adminis-
trativ function block)
This function block should always be preceded by
Send_3964_1 a "Write_3964_xxx"-function block.
—ra— BOOL If the input "send" is.set TRUE, then the function
BOOL e block tries to submit a telegram of the length
=Jsend =end_done BOOL | given atinput "tel_length" to the 3964R-driver. The
2 ermor_filled BOOL | outputinit_ok" is set TRUE if the 3964R-driver has
error_timeout BOOL been properly initialized. If the telegram was sub-
DINT BITOT_SynG BOOL | mitted successfully, then the output "send_done"
Wl tel_length length BOOL | is set TRUE. The error outputs "error..." are set
E”D_r_m“ig BOOL TRUE if the corresponding error occured: buffer

full, timeout, synchronization, telegram length
(too short) or collision.

m © iba AG 2009

Manual Page 4-33

Communication Function
Source Target —
No. Tvoe Blocks Tvpe Description, Examples
yp Symbol yp
Read_3964 Int: Reading a 3964R-telegram and
extraction of a maximum of eight integer values,
beginning at offset
This function block should always be preceded by
a"Recv_3964"-function block. If the input "read" is
set TRUE then the function block tries to read in-
teger data from the received telegram. The input
"offset" declares the offset for the integer data
range in the telegram. "number" defines the num-
ber of values to be read (1...8).
The input "ctype" is to be used for further specifi-
Example: Read 3964 Int cation of the expected data type, e.g. if swapping
is required:
e 0 (default) 4 bytes
BOOL =t read erlol_lgll'l:_pohfk g: 288:: 2 2 byteS
DINT Brerfenah E-IZI BOooL |3 2 bytes and Swap
3 E_J@e* wug[z_—] DINTDINT |, 4 bvtes
DINT int= [y 1] DINT DINT y
6 J[rumeer m2E[0 1 pNTDINT |5 4 bytes and Swap
DINT redl— DINTDINT
[Eetree :::g E (The read- and send function blocks for INT-,
it Bl 5 UINT and WORD data permit 2- and 4-byte
types; the read- and send function blocks for
FLOAT only permit 4-byte type)
The output "init_ok" is set TRUE if the 3964R-
driver has been properly intialized. TRUE at out-
put "error_empty" shows that the receive-buffer
is empty and no data are available for reading.
Output "error_lenght" is set TRUE if the telegram
is too short. The outputs "int0"..."int7" contain
the extracted integer values.
For the function blocks Read_3964_Uint,
Read_3964 Word and Read_3964 Float, the
rules apply correspondingly.
Write_3964_Int: Packaging of up to eight integer
values into a 3964R-telegram
Example: Write_3964_Int This function block should always precede a
"Send_3964"-function block in order to send the
Wirite_Z2954_Int_1 data_
irite_3064_Int
= wiite If the input "write" is set TRUE then the function
[0][ttt block tries to write the "number" of integer values
BOOL [0 |[Erumber init_ok [l BOOL | which are given at the inputs "int0"..."int7" into a
DINT DINT % g:ﬁe 3964R-telegram considering the "offset" and the
DINTDINT 7= [Hin1 type specification at "ctype". (For information about
4 DINT DINT [@i "ctype" please<refer to description Read_3964 _int
DINTDINT [T] Qint above.)
D”\IIDT”\?_;NT EE g::: error_length = The output "init_ok" is set TRUE if the 3964R-driver
@it BOOL has been properly initialized. The output "er-
[][>int7 ror_length" is set TRUE if the telegram is too short
to contain the values.
For the function blocks Write 3964 Uint,
Write_3964_Word and Write_3964_Float, the rules
apply correspondingly.

© iba AG 2009 m

Page 4-34 Manual

Communication Function

Source Target o
No. Tvoe Blocks I ge Description, Examples
yp Symbol yp
TCPIP_SendRecv: Sending and receiving data via TCP/IP
This function block may be used instead of DLL-based
communication functions.
Input parameters:
Send_data: Data to be sent (data types String or Array)
send: Send command; every task cycle when this input is
TRUE, the function tries to send.
Send_length: Number of bytes to be sent. If = 0, either
the entire array or the connected string will be sent. If the
value exceeds the total array length the length will be lim-
ited to array length.
New_para: Accepting new function block parameters if
= TRUE.
Rem_st_Adr: Remote Station Address. IP-address of the
target PC which is the communication partner. Parameter
format: nnn.nnn.nnn.nnn. Value is only required when
the instance of the function block is activ on the TCP/IP
connection.
Port_number: Port-number of the connection
untyped Mode:
BOOL . Bit 0 = 0: Strings will terminate to a value of 0.
UDINT Pl Sencdieas Bit 0 = 1: Strings will not terminate.
BOOL —[Siting 1] send._oats untyped . 9 ' '
—g:: - | BOOL Bit 1 = 0: Readbuffer will not be deleted after reading.
STRING —new cars receives [UDINT Bit 1= 1: Readbuffer will be delete after reading.
UDINT azzen e e
5 BOOL DPZ:JWW o s BOOL Active: This instance of the function block is activ on
BOOL =l R— BOOL | the TCP/IP-connection if = TRUE.
BOOL :3,";1”:5‘“ |est_srror_code DWORD High_prio: High Priority Mode = TRUE, for fast TCPIP-
UDINT E_gf:—:;“‘lzm last_srre_sting [STRING [communication < 10 ms cycle time.
BOOL | Recv_ok: Controls data flow on receiver-side. If = TRUE
BOOL data reception in the task is possible.

Recv_length: Length of received messages (only in con-
junction with Use_recv_length)

Use_recv_length: If = TRUE, messages of length
Recv_Length will be received.

Reset_last_error: Reset error outputs

Output parameters:

Recv_data: Received data (data types String or Array)

Received: Status; If = TRUE, a new message has been
received in the current task cycle.

Recv_length: Number of received bytes

Send_buffer filled: If = TRUE, a send trial failed be-
cause the first send buffer was still filled on first level.

Connected: If = TRUE, the connection has been estab-
lished.

Last_error_code: Code of the error which occurred re-
cently.

Last_error_string: Text of the error which occurred re-
cently.

m © iba AG 2009

4.2.7.

Manual

Signal processing

Page 4-35

No.

Signal Processing Function
Blocks
Symbol

Source
Type

Target
Type

Description, Examples

correlation_1

trigger t

ARRAY
ARRAY
BOOL

ARRAY
REAL
DINT

[=)

[=)

Correlation: Correlation of one or two signals

This function block evaluates the cross-correlation
between two Signals or —if the signal level of one of
the input signals is too low — the auto-correlation of
one signal. Additional outputs are the maximum
correlation coefficient and the array index.

in1, in2, out: One-dimensional arrays with 2, 4, 8,
16, 32, ...65536 elements, Startindex 0

The function block will only be evaluated if trigger
is TRUE.

cursars_1
Cursors

ARRAY
BOOL

ARRAY

Cursors: Basic frequency and harmonics

Using the method of amplitude comparison this
function block evaluates the basic frequency and the
corresponding harmonis of input signal in. The basic
frequency can be found at index 0 in the output ar-
ray out, the harmonic at the indices 1...n.

in, out: One-dimensional REAL-Arrays with 2, 4, 8,
16, 32,...65536 elements, Startindex 0

The function block will only be evaluated if trigger is
TRUE.

distortion_1

trigger thd

ARRAY
BOOL

ARRAY

L 1 REAL

E—

Distortion: Grade of distortion

This function block evaluates the grade of distortion
(harmonic distortion) of an input signal in and the
total harmonic distortion (thd).

in, out: One-dimensional REAL-Arrays with 2, 4, 8,
16, 32,...65536 elements, Startindex O

The function block will only be evaluated if trigger is
TRUE.

ARRAY

BOOL ARRAY

rfft: Real Fast Fourier Transformation

This function block returns a single-sided fft result
(absolute value).

Input in should be of data type array, e.g. an array
of reals with dimension of 2" (64...32768 array in-
dexes). Output out is also an array of reals but with
dimension of 2" (e.g. 32...16384). Input trigger =
TRUE enables the FFT-calculation. If trigger is FALSE
the function block doesn't calculate and so won't
consume processor time.

© iba AG 2009

Page 4-36 Manual

Signal Processing Function
Source Target .
No. Tvoe Blocks Tvoe Description, Examples
yp Symbol yp
DigFilt: digital filter
UNTYPED Digital filter for continuous or buffered signals
BOOL connected to input in. Lowpass, highpass, band-
STRING pass and bandstop filtertypes are available. Filter
STRING implementation may either be IIR- (Infinite Im-
STRING pulse Response) or FIR- (Finite Impulse Response
LREAL UNTYPED | As IIR-Filter Butterworth-, Tschebyscheff-, Ellip-
5 LREAL STRING | tic- and Invers Tschebyscheff characteristics are
LREAL BOOL | available. As FIR-Filter the windowing types Rec-
ARRAY STRING | tangle, Bartlett, Blackman, Hamming, Hanning
ARRAY and Kaiser are available.
4 BOOL Setup of parameters and errors will be indicated
LREAL as text (used_filt_para, last_error_string).
BOOL For more information please refer to chapter 4.2.9

m © iba AG 2009

Manual Page 4-37

4.2.8. Special and helpful basic FBs

Special Basic Function
Source Target o
No. Tvbe Blocks Tvoe Description, Examples
yp Symbol yp
Ch40scilloscope: Multichannel Oscilloscope
BOOL Function block to use like a probe. Scalable from
REAL one up to four channels. TRUE at input trigger starts
Any type the monitoring. Inputs xUnitn for x-scale, inputs chn
REAL for signals to be monitored.
1 A?;EtApre Open display with tool bar button BA or right
Any type mouseclick on function block.
REAL For more information please refer to chapter
Any type 3.13.4
Ch32 Logic Analyzer: Oscilloscope for boolean
signals
Ch3ZAnalkyzer_1
BOOL e 2 Function block to use like a probe. Scalable from
REAL O jxugngit one up to 32 channels. TRUE at input trigger starts
BOOL ——gemn the monitoring. Input xUnit for x-scale, inputs chn
BOOL chi for boolean signals to be monitored.
— | ch 2
2 gggt _g - Open display with tool bar button B or right
BOOL ——fd s mouseclick on function block (multichannel oscillo-
—_—| ek scope)
BOOL 5 e . .
BOOL For more information please refer to chapter
3.13.4
Oscilloscope: ordinary oscilloscope
_ This function block monitors shape and trend of one
el signal. Lower input (BOOL) on TRUE will enable con-
tinuous autoscale function. Output (REAL) shows
the last value.
BOOL Attention: Processing time consumption depends on
size of representation in function block diagram!
The bigger the display the more time it needs!
switch: pushbutton and switch
This function block is a good help for manual simu-
lation of boolean signals. For pushbutton-function
use left mouseclick on function block (symbol). Out-
Suitch 1 put will be TRUE as long as mouse button is
— pressed.
For switch-function use right mouseclick. Output
4 BOOL BOOL toggles with every click.
Input for alternativ switch control by a boolean sig-
nal. If input is TRUE (permanent or impulse) then
output of switch is TRUE (permanent, switching off
manually).

© iba AG 2009 m

Page 4-38 Manual
Source Special Basic Function Target
No. Type Blocks T ge Description, Examples
yp Symbol yp
slider: digital potentiometer
This function block returns any value in the range
Stider 1 given by minimum value (upper input) and maxi-
H mum value (lower input)depending of the slider po-
5 EEQ:: 1@l . 0 % REAL DINT [sition. Resolution is 1000 steps. The slider position is
returned at the lower output (0...1000). Inputs are
set on 0/ 1 by default but they can have any value.
showsString: display of any value
This function block is helpful for display of any
value, particularly for long figures or strings. Inter-
6 Any type B STRING | prets input always as string. Output is of type
STRING.
g(\;VOOLRD D atfilewite_1 DWORD | DatFileWrite: Creating and filling of *.dat-files
DINT SE:Z;LEU::;T This function block is designed to open, to fill and
BOOL o store_values easc_next i DINT to close data files of iba's *.dat-type directly in the
STRING Frum values e stored [ibaLogic layout. As usual the created data files can
BOOL —:':’_I”f—""'“s T BOOL be further processed and evaluated with ibaAnalyzer
I e_name file_iz_open [T or other tools, which are able to read the dat-
BOOL =] store_file
LREAL =] rew_tile st “H DWORD | format.
STRING g:::_?,:j;me _ STRING Due to the function block's complex functionality
7 | STRING Htechno_sting =<0 please refer to the following chapter 4.2.9 for de-
ga/ool'RD _g ;e::;m:::::; file_is_signed [Tk BOOL tailed information.
STRING _g zi_::::land chan0_par_ok [BOOL
BOOL -] sig_n_file)
BOOL | ahen e chan0_ermor_string [STRING
Any type gchanﬂ_info chan0_mod_chan_no [H
Any type chand_enab
Any type STRING
STRING DatFileCleanup: Clean up the harddisk
BOOL This function enables the ibalLogic application to
UDINT BOOL care out a cleanup-strategy in terms of old data files
BOOL UDINT on the harddisk. Depending on settings and criteria
8 BOOL UDINT (input parameters) similar to those in ibaPDA old
UDINT DINT data files may be deleted or overwritten.
BOOL STRING) .
BOOL For more information please refer to chapter 4.2.9
BOOL
Validate: Monitoring and setting valid sig-
nals
This function block monitors the validity of a con-
nected input signal.
Walidate_1
Any type alidate Any type | Output isValid is TRUE if input in is valid. If input in
_| l_in aut [P
9 BOOL THeveid valid o BOOL is invalid then the output out is invalid too and the

output isValid is FALSE. If input setValid is set TRUE
then output out is forced to valid, with the recent
value. By using this function block in a network of
recursive evaluations (loops) it's possible to prevent
an invalid deadlock of the evaluation. Just insert this
block in the loop and set the input setValid =TRUE.

© iba AG 2009

Manual Page 4-39

4.2.9. Complex funktion blocks

4.2.9.1. PIDT1Control
PIDT1Cantral_1
[Ow
[WK
[[0 vp
K] ml
1 [l ye
[mES
1 [ke VP
T#0s [Htn
0 Ly yi
T#0s w3
—Hen yvd
—imv
—Henp ql
—eni
et qu
—hi
—Je=n_d

Function and usage

Universal PIDT1-controller with several modes of operation as P-, I-, Pl-, PIDT1-
controller.

Functions:

Setting start value for integrator

Q Holding current value of integrator

Q Precontrol value wp

Q Control limits Il (low) and lu (up)

Q Proportional coefficient kp

a Reset time tn

Q Control deviation reversible

Q Indication of limit violation

QO Indication of control deviation

Q Indication of controller output value (P, I, DT1)
Connectors

Connector Data type Description

w LREAL Reference value
X LREAL Actual value

wp LREAL Precontrol value
I LREAL lower limit

lu LREAL upper limit

sv LREAL Initial value

kp LREAL P-gain

tn TIME Reset time

kv LREAL D-gain

© iba AG 2009 m

Page 4-40 Manual

Connector Data type Description

cont'd. PIDTT | TIME D-time constant
en BOOL Controller release
inv BOOL Inversion of control deviation
en_p BOOL Enable P-controller mode
en_i BOOL Enable I-controller mode
set BOOL Set integrator
hi BOOL Hold integrator
en_d BOOL Enable D-controller
y LREAL Control value
ye LREAL Control deviation
yp LREAL Output value P-controller
yi LREAL Output value I-controller
yd LREAL Output value D-controller
ql BOOL lower limit reached
qu BOOL upper limit reached

m © iba AG 2009

Manual Page 4-41

4.2.9.2. Ramp

Function and usage

The ramp function block provides two different ramps, manual and automatic
mode of operation.

Functions:

a Reference value limitation (IlI' and 'lu")
Q Going to new reference value via ramp
Q Setting reference value
Qa

Indication of limit violation

Connectors
Connector Data type Description
X LREAL Input value (reference value)
I LREAL Lower limit
lu LREAL Upper limit
sv LREAL Initial value
rm LREAL Manual ramp (10/s)
ra LREAL Automatic ramp (10/s)
cd BOOL Descending ramp (manual ramp control)
cu BOOL Ascending ramp (manual ramp control)
cf BOOL Ramp acc. to. input value (automatic ramp control)
set BOOL Set output value
y LREAL Output value; y, =y, + T, ore 10
T, = task cycle time
r = used ramp
r LREAL Used ramp (1/s)
ge BOOL Output value = input value
ql BOOL lower limit reached
qu BOOL upper limit reached

© iba AG 2009 m

Page 4-42

4.2.9.3.

Manual

DigFilt - digital filtering of signals

DigFilt_1

DigFilt

— T
=] trigger
LowP ass [select
IR [Tl implementation
Buttenvorth [Tl characteristic
10 [fraqueney
Z0 [0 gain
n [0 9_facter
100 [0 freqlist
] [T gainlist
=] use_list_val
[0] [d=ample_time
i] new_filt_para

out [H

uzed_filt_para [H

filt_net_real [T

last_srrar_string o]

Function and usage

|

]

This function blocks works like a digital filter for continuous or buffered signals.

Signals to be measured may be cleared of disturbing frequencies (noise or hum)
in order to improve the control quality of a connected open or closed-loop con-
trol. In conjunction with the rfft function block the frequencies which are in-
cluded in a signal may be detected and filtered out.

Connectors

Connector Data type Description

in untyped Input signal to be filtered; permissible data types: REAL
and one-dimensional ARRAY of REAL

trigger BOOL The function block will only be evaluated if trigger is
TRUE.

select STRING Selction of filter type; the input string must have the ex-
act spelling as follows (high- and low case sensitive):
LowPass...........cceennee for lowpass filter
HighPass................... for highpass filter
BandPass.................. for bandpass filter
BandStop................. for bandstop filter
(Error message no. E0OO in case of misspelling)

implementation |STRING Selection of filter implementation; the input string
must have the exact spelling as follows (high- and low
case sensitive):
lIR.....(Infinite Impulse Response)
FIR....(Finite Impulse Response)
This input depends on the selection at input character-
istic. (see table below)
(Error message no. EO1 in case of misspelling)

characteristic STRING Selection of the filter characteristic; the input string

must have the exact spelling as follows (high- and low
case sensitive):

Butterworth, Chebyshev, Elliptic or InvChebyshev (IIR)
Rectangular, Bartlett, Blackman, Hamming, Hanning
or Kaiser (FIR)

This input depends on the selection at input imple-
mentation. (see table below)

(Error message no. EO1 in case of misspelling)

© iba AG 2009

Connector Data type Description
cont'd. DigFilt ~ frequency LREAL Corner- or main frequency of the filter, given in Hz

gain LREAL Attenuation (per decade or maximum), given in dB

g_factor LREAL Quiality factor, ratio of main frequency and bandwidth
(for bandpass- and bandstop filters)

freqlist ARRAY(0..3] |List of filter frequencies

of LREAL

An array of up to four frequency values may be con-
nected to this input. The input signal will be filtered on
all of these frequencies. Each frequency may be filtered
with an individual attenuation. Thus, several frequencies
may be filtered from the input signal at the same time.

gainlist ARRAY[0..3] | List of attenuation values, corresponding to the list of 4

of LREAL filter frequencies.

use_list_val BOOL Enable (=TRUE) usage of frequency and attenuation val-
ues from the arrays freqlist und gainlist.

sample_time LREAL Sample time in ms which corresponds with the samples
of the input signal.

new_filt_para BOOL This input must be set TRUE for one task cycle if new fil-
ter parameters should apply.

out untyped Filter output signal; the data type derives automatically
from the input signal.

Iused_filt_para STRING Output / indication of the used filter parameters

filt_not_real BOOL If the function was not able to evaluate a filter, e.g. due
to an incompliance of input signal and filter parameters,
this output is set TRUE.

last_error_string | STRING Recent error message (text)

Manual Page 4-43

Combinations of parameters and their dependence

if "implementation" =

....then "characteristic" = ...

IIR Butterworth, Chebyshev, Elliptic
or InvChebyshev
FIR Rectangular, Bartlett, Blackman,

Hamming, Hanning or Kaiser

Sample application (Layout) on CD

sample_layout_digfilt_101.lyt

This sample application helps to get familiar with the function and usage of the
b} DigFilt function block. Some support for entering filter parameters (type,
implementation, characteristic) is provided.

The sample shows the filtering of a buffered signal (task 0) and a time-discrete
signal (task 2) as well.

© iba AG 2009

Page 4-44 Manual

4.29.4. DatFileWrite-function block — generation of iba data files (*.dat)

CratFileiirite_1
DatFileirite

[0 casc_prev
ot
—{] store_values saze_net [
[0 num_values
—{] buf_values

[file_name

sum_values_stored [

file_is_open D=
= store_ile ~f=_cpen [

=] new_file

[sample_time
[file_info

[techno_string
=i nen_maodule
[l mode_select
[pp_command
=] pp_enab
=i zign_file

[chanO_data
[B] chanO_info
(B chanO_snab

last_ermor_sode [
last_emor_string [
file_iz_signed [
chanO_par_ok [
chand_emror_string [I]

chan0_mod_chan_no [

Function and usage

The DatFileWrite function block stores data in dat-files which may be analysed
later with ibaAnalyzer or any other offline analysis tool which is able to read the
iba dat-file format. The data types of the data that can be stored are INTEGER,
REAL or BOOL data or ARRAYs of these types. The data stored per channel in a
dat file can be single data or buffered data. Each individual data channel can be
enabled and application-specific information can be written to the dat file.

The number of data inputs to the DatFileWrite function block is extensible from
minimum 1 to a maximum of 16 input and output groups. For each group a data
input, an info input and an enable input together with a para_ok output,
last_error_text output and Mod_chan_no output are added.

Connectors

Connector Data type Description

casc_prev DWORD Not used, reserved for future use

store_values BOOL Enable storage; if the file is open data will be stored
in the dat file in every evaluation cycle this input is
set on TRUE.

num_values DINT Number of values to be stored; only used if buffered
values are used, the minimum number of stored
data per channel, per storing cycle is 1. This value is
taken into account every cycle when data is stored.

buf_values BOOL Enable use of buffered values; if set on TRUE buff-
ered values are used (this input is taken into account
once when a new file is created)

file_name STRING Data filename; file name of stored file including
drive and path. This value is taken into account once
when a new file is created.

store_file BOOL Start function block; a rising edge on this input runs
the input connector check, opens a file and enables
internally the storing of data.

A negative edge on that input closes the file and
runs the postprocessing command if this function is
enabled.

m © iba AG 2009

Manual Page 4-45

Connector Data type Description
contd. new _file BOOL Make a new file; a rising edge on this input closes
DatFileWrite the currently used and open file and opens a new

file using the file_name input. In any case the
store_file input must be set on TRUE. (corresponds
to the continuous recording in ibaPDA)

sample_time LREAL Sample time; this input value is used for setting the
clk-entry in the dat file and means the time between
two samples of a channel in seconds.

file_info STRING optional; at the time of closing the file the file info
string is used to add user defined entries in the dat
file.

techno_string STRING optional; at the time of closing the file the technos-

tring is inserted in the dat file.

new_module BOOL Align to new module; if set on TRUE a new channel
will be inserted at the beginning of a new module in
the file.

mode_select DWORD Control word for miscellaneous functions; the func-

tions described below will be executed if the corre-
sponding bits in the DWORD are TRUE.

Bit0: Flush Buffers

The contents of the internal data buffer for the
online-compression will be written into the dat-file.
Thus it's possible to access and analyse these data
with ibaAnalyzer even when the file is still open.

Bit1: Asynch Access (asynchron access)

All file and system calls will be executed on a sepa-
rate thread (asynchron to the thread of evaluation).
For this mode the following restrictions apply:

1. Only one dat-file can be opened by a function
block at a time. The current data file must be fully
stored before the next file can be opened.

2. The data buffer between task-evaluation (which
delivers the data) and the asychron thread (which
fills the data into the file) is limited to 1 MB.

Bit2...32: Not used, reserved for future use;

pp_command STRING Postprocessing command; is executed when a file is
closed and at least one sample is stored and the
function is enabled.

pp_enab BOOL Postprocessing enable; if set on TRUE, then the
postprocessing command is enabled.

sign_file BOOL If set on TRUE the file will be signed to enable en-
hanced ibaAnalyzer functions for offline analysis.

chanx_data untyped Data input for each channel (x =0 ... 15)

chanx_info untyped Additional info for each channel (x =0 ... 15)

chanx_enab untyped Enable data acquisition for each channel (x = 0...15)

© iba AG 2009 m

Page 4-46 Manual

Connector Data type Description
contd. casc_next DWORD Not used, reserved for future use
DatFileWrite
sum_values_stored | DINT Sum of values stored in the current dat-file per

channel. Every time a new dat-file is created, the
value is set on 0.

file_is_open BOOL Status bit: File is open (= TRUE). Data can only be
stored if the file is open.

last_error_code DWORD Used for indication what error happened recently
(code)

last_error_string STRING Used for indication what error happened recently
(text)

file_is_signed BOOL This flag is set on TRUE when the file is closed and
could be signed. It is reset (FALSE) when a new file is
opened.

chanx_par_ok BOOL Status: Parameter ok for each channel (x = 0 ... 15);

When a file is opened, the parameters of the input
connectors (_data, info and _enab) are checked for
data types and number of entries. If the check found
no error and if the channels are enabled for storing,
the chanx_par_ok output is set on TRUE.

chanx_error_string STRING For each channel (x =0 ... 15)

If the check of the input connectors found an error,
a reason is displayed here (text message).

chanx_mod_chan_no STRING For each channel (x =0 ... 15)

Indication of module and channel numbers of the
signal in the dat-file.

How to use the function block

After placing the "DatFileWrite"-function block in a layout the user needs to fill
out or specify the sampling time and make a decision whether single values or
buffered values should be used. Don’t forget to fill out the "num_values" input if
you use buffered values mode. Then the signals to be stored must be connected
to the chanx_data inputs. For each input channel that needs to be stored the
_enable input must be set on TRUE either by one single boolean input or an
matching array. The next step is to specify a file name.

In order to store data, first the file must be opened, and a check of the input
channels will be performed. To do that set the store_file value on TRUE. If the
check for any input channel fails, the related par_ok output will is set on FALSE
and an error string is generated. You may want to use the "ShowString"-function
block to take a look at the reason. Finally you should be able to fix the problem
so that the file_open output will turn on TRUE.

With the store_file input permanently set on TRUE and the store_values input set
on TRUE, the function block will store data.

When all data are stored in a file set the store_file input on FALSE. Then the file
will be closed, signed if selected and the postprocessing command may be exe-
cuted if selected.

m © iba AG 2009

Manual Page 4-47

contd. Rules for overloadable input connectors
DatFileWrite
Q Chanx_data

» Scalar data type INT, REAL or BOOL, if single values are used.

»= One-dimensional array of data type INT, REAL or BOOL, if single values are
used every index of the first dimension means one signal, if buffered values
are used every index of the first dimension means a different sample of the
same signal.

= Twodimensional array of data type INT, REAL or BOOL, only if buffered val-
ues are used. Every index of the first dimension means one signal, every in-
dex of the second dimension means a different sample of the same chan-
nel.

Q Chanx_info — optional

= STRING, this string is used for every signal (= channel) to add the info en-
tries into the dat files.

» Array of the same dimension as the data array of any data type (strings can
be hidden there, since there are no arrays of strings possible) the number of
entries in the first dimension must match the number of entries in the data
array.

Q Chanx_enab -
= BOOL, this flag is used for every signal of a channel to enable the storing.
* One-dimensional array of data type BOOL, can be used with single values or
buffered values, the number of signals that can be enabled with this array
must match the number of signals in the data input.

Special Remarks

@ The cascade inputs and outputs are not used yet.

@ The time consuming function calls for storing data in a file are part of the
layout evaluation and may block the evaluation of your layout. In order to
prevent such problems enable the asynchron access mode (input
mode_select, bit1 = TRUE).

@ Thesorting of channels in the ibaAnalyzer supports 32 analog plus 32 digi-
tal channels per module. If more than 32 signals should be stored and / or a
mix of analog and digital signals is used it is strongly suggested to use the
ibaAnalyzer-compliant 32-analog-plus-32-digital-signal arrangement in that
order per module.

Q In order to use the function block the ibaLogic layout must run in online
mode and some iba hardware must be installed so that the ibalLogic driver
is working. The function block also works in demo mode with or without
dongle. If the function block is used without a dongle the created dat-files
won't be signed, i.e. the data may be viewed with ibaAnalyzer but not ana-
lyzed. If ibaLogic is used without dongle but in eCon-mode, the dat-files
will be created without signature, i.e. the data may be viewed with ibaAna-
lyzer but not analyzed. If ibaLogic is used with a dongle the function block
creates signed dat-files for full analysis capability.

© iba AG 2009 m

Page 4-48 Manual

cont'd. Rules for text entries in dat-file

DatFileWrite . . ;
Any text entry in the dat file follows the rule <entry name>:<any text>. Entries

can be made for the file or for an individual signal. The entries are used and dis-
played in the ibaAnalyzer. The DatFileWrite function block allows to enter multi-
ple entries separated by ‘,’ (comma). Some entry names have a predefined mean-
ing in the dat-file and writing some vital entries in the dat-file will be prohibited
by the function block. Some entries will be written by the function block itself
only if the user has made no selection.

Liste of global header text entries (excerpt)

Entry_name Meaning Class by ibaLogic by user
beginheader Beginning of the header vital yes no
starttime Starttime of the file vital yes no
clk Sample distance vital yes no
frames Number of values vital yes no
typ Type of file vital yes no
ibalogic ID of Generator optional |yes no
technostring Technostring information | optional |yes no
endheader End of the header vital yes no
module_name_x Name of the module optional | no optional

Liste of channel header text entries (excerpt)

Entry_name Meaning Class by ibaLogic by user
beginchannel Beginning of the header vital yes no
channel_offset Offset of Channel vital yes no
digchannel Digital Channel info vital yes no
name Name of Channel vital yes optional
minscale Minimum Scale vital yes optional
maxscale Maximum Scale vital yes optional
endchannel End of the header vital yes no

For storing additionally application-specific information in the dat-file the follow-
ing method can be used:

Add a string like ,,myentry:mytext” in the input connector string. More than one
entry must be separated by *,” (comma).

Sample application (layout) on CD

ﬂ)) sample_layout_DatFileWrite_301.lyt
é A : This sample application helps to get familiar with the function and usage of the

b <] DatFileWrite function block. Some support for parameterize the block is provided.

The sample shows the creation of a dat-file with single signals (Task Sample _1) and
buffered signals (Task Sample 2) as well.

m © iba AG 2009

4.2.9.5.

© iba AG 2009

Manual Page 4-49

DatFileCleanup-function block — clean up the harddisk

DatFileCleanup_1

Function and usage

This function block enables the ibalLogic application to care out a cleanup-
strategy in terms of old data files on the harddisk. Depending on settings and cri-
teria (input parameters) similar to those in ibaPDA (trigger settings / options) old
data files may be deleted or overwritten finally.

Connectors
Connector Data type Description
path STRING Storage location of the dat-files (= location concerned by
cleanup measures); drive name and full path required.
enab BOOL The function block will be evaluated with each positive
edge at this input; if enab is constantly TRUE, the func-
tion block is evaluated every 15 min.
min_space UDINT Disk space (given in MB) that at least should always be
free. If the function block detects a violation of this limit
it will start the cleanup measures, provided the
enab_space input is TRUE.
enab_space BOOL Enable keep-minimum-space-function; if set on TRUE the
monitoring of free disk space is enabled, see above.
enab_subdir BOOL Enable cleanup of empty subdirectories; if this input is set
on TRUE empty subdirectories will be removed too after
48 hrs.
min_n_files UDINT Minimum number of files to keep; this number deter-
mines how many files should stay on the disk. This pa-
rameter prevents the system from removing all the dat-
files. This situation may occur if other processes, e.g. a
PDA-system, writes data to the same harddisk, consum-
ing its free space and violating the lower limit of free disk
space.
enab_files BOOL Enable (= TRUE) the monitoring of number of files, see
above
extend_log BOOL Enable (=TRUE) creation of log file to record events dur-
ing cleanup.
new_para BOOL This input must be set on TRUE for one task cycle if new
parameters should apply.
Icleanup_running BOOL Status flag: cleanup is running.
Ispace_avail UDINT Free space (MB) during last cleanup
n_files found UDINT Number of files found during last cleanup
last_error_code |DINT Recent error message (code)
Ilast_error_string STRING Recent error message (text)

Page 4-50 Manual

4.3 Global variables

Generally, ibaLogic is conceptually based on the use of encapsulated data struc-
tures. On the contrary to other control applications, global variables are the ex-
ception. There are a few global system variables which could be used in function
block diagrams, structured text or C++ statements (DLLs).

No. Variable Name Target |Description
Layout Symbol Type
1 logic_EvalTime = time lapsed since start of the application;
logic_EvalTime_1
logic EvalTims
EvalTime [T#2m10s4E0ms]= TIME
logic_EvalDeltaTime = time lapsed since last start of the task (scan
2 logic, EvalDeltaTime_1 time); the use of this variable will help to
togle PrePeteTime eliminate deviations in scan time and to
EvalDeltaTime [T#60ms |
TIME evaluate the correct results.
logic_Online = state of layout: online; certain functions or
3 logic Online_1 the use of resources may be locked with this
'°';i°-;:'i'ni”j|]_ variable in dependence of online or Hot-Swap
BOOL mode of the layout.
TRUE: Layout is online, outputs are activ
FALSE: Layout is offline, outputs are locked,
inputs are still active.
logic_Unlocked = state of Layout: unlocked; to be used for
4 IR & locking default values if layout is locked.
lagic_Unlodeed
Unloded [B= BOOL TRUE: Layout is unlocked, modifications are
possible
FALSE: Layout is locked, modifications are
impossible
This variable can be used, for instance, in con-
junction with DLLs in order to prevent modifi-
cation of default values by the DLLs, if not al-
lowed.
logic_AcqRestartCount = counter value to indicate the number of
5 logic AcaRestarGount_1 driver restarts since start of evaluation.
legic_AogRestartCount
AcqRestartCount B This variable can be used to inform the layout
about restarts of drivers (hardware) in order
UDINT to adjust the hardware parameters if needed.

m © iba AG 2009

Manual Page 4-51

4.4 Global FBs and macros

Global FBs and macros are to be used when multiple ibaLogic systems should use
these functions which are needed in different applications.

If such kind of function or macro blocks had been created by the user as local FBs
or macros first, they should then be copied or moved in the Windows Explorer
from the folder ...configuration\FBs Macros = to the folder
...configuration\globalRessource\FBs_Macros.

e The same blocks should NOT be available in the local folder and in the
global folder at the same time, because they will always be displayed as
global FBs and macros.

e After deleting or copying of blocks in the folder
...configuration\globalRessource\FBs_Macros ibalLogic must be restarted
in order to refresh the display of the function tree.

e Deleting of FBs/MBs is only permitted in the Windows Explorer (not
inside of ibaLogic)!

e [f the contents of a block has been modified afterwards, this block has
to be exported again as a local FB/MB, followed by copying it to the
global folder with the Windows Explorer.

4.5 Global DLLs

=&

© iba AG 2009

Global DLLs which had been created by the user in C or C++ are useful if the
functionality of a DLL is needed in multiple projects.

The global DLL is made available in ibalogic by copy it to the folder
...configuration\globalRessource\DLLs, using the Windows Explorer.

e The same DLLs should NOT be available in the local folder and in the
global folder at the same time, because they will always be displayed as
global DLLs.

e After deleting or copying of DLLs in the folder

...configuration\globalRessource\DLLs ibalLogic must be restarted in order

to refresh the display of the function tree.

e Deleting of DLLs is only permitted in the Windows Explorer (not inside of

ibaLogic)!

4

Page 4-52 Manual

4.6 Local FBs and Macros

Local FBs and macros are to be used when the functionality of a FB or macro
block (MB) is needed multiple times in the same project.

After the project-specific block has been created in the layout it must be ex-
ported. In order to export a FB or MB make a right mouseclick on the block in the
layout. From the context menu choose “>Modify “>Function Block, resp. Macro
Block and then click on the Export button in the FB-/MB-dialog. The new FB or
MB is then available as a file (*.fbm) in the folder ...configuration\FBs_Macros.

If there are more FBs or MBs already available as files in other projects they can
be copied easily with the Windows Explorer to the local folder
...configuration\FBs_Macros.

4 e The same blocks should NOT be available in the local folder and in the
@ global folder at the same time, because they will always be displayed as
global FBs and macros.

e After deleting or copying of blocks in the folder
...configuration\globalRessource\FBs_Macros ibalLogic must be restarted
in order to refresh the display of the function tree.

e Deleting of FBs/MBs is only permitted in the Windows Explorer (not
inside of ibaLogic)!

e [f the contents of a block has been modified afterwards, this block has
to be exported again as a local FB/IMB, followed by copying it to the
global folder with the Windows Explorer.

4.7 Local DLLs

Local DLLs are to be used when the functionality of a DLL is needed multiple
times in the same project.

In order to use a DLL which had been created by the user in Cor C++, it must be
made availble in ibaLogic in one of the following ways:

» When ibalogic is running, use the menu “>File --Open DLL... A file
browser helps finding the DLL-file. Click on the Open button and the DLL
will be loaded and copied to the folder ...configuration\DLLs.

» The DLL file may also be copied with Windows Explorer to the folder
...configuration\DLLs but the DLL is not available in ibalLogic until ibalLogic
has been restartet.

e The same DLLs should NOT be available in the local folder and in the

@ global folder at the same time, because they will always be displayed as
global DLLs.

e After deleting or copying of DLLs in the folder ...configuration\DLLs
ibaLogic must be restarted in order to refresh the display of the function
tree!

Deleting of DLLs is only permitted in the Windows Explorer (not inside of ibaLogic)!

m © iba AG 2009

Manual Page 5-1

5 Process interface

The I/O process interface and the open communication interface of ibalLogic is
based on the use of preconfigured and easy connectable input- and output re-
sources. The available resources are shown in the resource area of the screen (tab
"Resources"). By means of the resource selection tabs at the bottom choose be-
tween input- and output resources.

5.1 Input resources

The input resources are subdivided into the following groups::

Overview input resources e FOB-F/FOB-IO (incl. FOB 4i PCl card)

T Fesoie |31 Loyer componens | (] 14]] Standardized analog and digital inputs, 32 groups (modules) with 32 in-

=-(® FOBFFOBID puts each (max. 1024). Incoming connection by fibre optical link from
D Analog (Real)
(1 Analog (ntegen 1) PADU (Parallel Analog Digital Units)
@ o7 wutaraaode 2) ibaNet750 (WAGO) Remote-}/O-terminals or
--{:| Analog(Integer) 3) SM64 / SM128V-cards.
--{:| Digital) .)
*{> FFBFILLCOUNT With a PCMCIA-F card only the first two modules will be used.
-*{> FFBDATASIZE
I FRECYCTIME 1 e FOB-F Buffered Mode
) FOB-SOVFOB-TDC
Simadyn-D Techno These inputs refer to the first eight modules of a FOB-F card, buffered by
tGa 9 S madm D e ibaLogic environment.
-5 LNk
@[3 LNk Predefined set of input variables for measuring systems that use buffered
e Linke measured values from FOB-F cards (e.g. for FFT and recording applica-
IDEE P UREMENTACTIE tions). Max. buffer depth is 256 values for up to eight modules with 32
{8, LZB%2 Flanheit channels each (8* 32 = 256 channels).
D Processar 1
HD Processor 2 -
D P e FOB-SD card
B Analog (Real Full automatic interface to SIMADYN-D or SIEMENS TDC control devices
jg R (CS12/13/14); it supports passiv and request mode.
—-[=), Reflective Memo . .
5 ..{RjﬂAfm;tRw;y 1) SIMADYN-D Techno; predefined TechnoString.
8 Analog (Intege) 2) SIMADYN-D Lite; predefined set of input variables by C522
-7 Digital
{8, TERAF Technostrin _
D String Value ! ° FOB M/IN
D__%VF'T““h“""ﬂ”e_ Predefined set of input variables for 25 kHz-measuring system with FOB-
50, sConiPPIO N : M / Padu8 ICP / Padu8 M (vibration monitoring)
@] carda
- card 1 e L2BX/2 Flatness
(B, PlaybadkIN
-] Analeg (Real Predefined set of input variables for flatness measurement; connection by
@] Analog (ntegen Profibus L2Bx-F or L2B x/8 PClI.
D Digital
- Playback Active
[T Pla:back Time in Dat File d L2 B/|I"\
j:ED E:;::‘;'TC e Standardized analog and digital inputs, 32 groups (modules) with 32 in-

puts each (max. 1024). Incoming connection by profibus link from

1) S7 (only 28 Real Values per Module due to S7 limitations)
2) Any other Profibus Master

e Reflective Memory

; Predefined set of input variables for a Reflective Memory connection. Analog
=) Input Resources i i |ons| D o I . -
e SaE e (integer or real) and digital inputs devided in groups of 32 modules with 32

inputs each (max. 1024). Special hardware components (cards from VMIC)
are required.

cont'd next page

© iba AG 2009 m

Page 5-2 Manual

cont'd input resources e TCP/IP TechnoString

TCP/IP-input variables, one group of 16 STRING and one group of 96 FLOAT
variables; assignment of variables to TechoString is done under menu >
TechnoString > TCP/IP...

e CSV TechnoString
Choice of 128 TCP/IP input STRING variables; the single variable in

the CSV-string is separated by comma (CSV = Comma Separated
Value)

e ¢eCon/PPIO IN

Predefined set of 32 input variables connected via the parallel port of the
PC (printer port, Iptx).

e Playbackin

Predefined set of analog and digital input variables to be supplied with
data by iba data file in playback mode. 32 modules with 32 analog inputs
(integer or real) and 32 digital inputs each.

e Generator

Signal generator for sine, rectangular, triangular or custom- shaped sig-
nal with easy parameterization.

e System UTC Time

System time to be connected and used with time controlled functions for
display or evaluation.

5.1.1. FOB-F, FOB-10 or FOB 4i- Input Resources
The FOB-F, FOB-10 and FOB 4i — input resources are devided into groups of:

Q Analog (real) Modules 1..32 or alternatively
Q Analog (integer) Modules 1..32 and
a Digital Modules 1..32

Each module consists of 32 inputs, i.e. a maximum of 32 * 32 = 1024 analog and
1024 digital inputs are available.

Each fibre-optical connection of a FOB-F, FOB-IO or FOB 4i-card is linked to two
modules with 32 inputs, i.e. a total of 64 analog and 64 digital inputs.

10_image optical
link = 2 modules

Cho;zﬁ:;fﬁrg:ess with 32 inputs each
analog binary
0 ani— I [o} Input ana.l Tnputhin.1
- 1 optical g 22 Input ana 2 Inputhin.2
Link Le | B | Input ana 3 Inputhin 3
L totd of E 32180 Modulz 1
t 64 analog end 3} T | |£= H :
i B binay ol B L= | [E] .
b inputs per ' = ? 87
5 optical link a o o a2 Input ana. 32 Input bin 32
E g =+ i ;_ Input ana.l Inputhin.1
i = g Input ana 2 Inputhin.2
e.g. FOB-4PCF card ""-.\. ,m o . H Input ana 3 Inputhina
=4 optical links, ", &N . .
i.e. 464 = 256 analog and binary ™, = max. 8% : : Module 2
inputs \~., =18 . .
g Q| |8
"\ = Input ana. 32 Input hin.32
Two links are required to connect
a SM128V - [fO-card

Fig. 70 FOB 4i PCl-card, FO-connectors

m © iba AG 2009

Manual Page 5-3

One optical link can be connected to:

Q one SM 64-10-card (64 analog and 64 digital signals)
two PADU 32 devices (2*¥32 = 64 analog and 64 digital signals)

eight PADU8-devices (8*8 = 64 analog and 64 digital signals)

U 0 O

eight WAGO-terminal heads (8*8 = 64 analog and 64 digital signals)

& ibaLogic Version 3.871 - ibaLogic_man_ch05

File Edit ‘fiew Ewvaluate Layout HotSwap TechnoSting Hardware Help

D |D Layer C it ID Reportl
EI-- FOB-F/FOB-10 =]
-] Analog (Real)
-3 Analog (Integen int_to_lreal_1

[l FOB-F b0 Int.
[FOB-F M1 Int.
- FOB-F b2 Int.
2] FOBF M2 Int. 00 T —————» FOB-F M2 Int. 00 Movement Up [}
FOB-F M2 Int 01—l FIB-F M2 Int 01 Movement Right [I]
FOB-F M2 Int, 02

FOB-F M2 Int. 03
FOB-F M2 Int. 04
FOB-F M2 Int 05
FOB-F M2 Int 06
FOB-F M2 Int, 07
FOB-F M2 Int 08
FOB-F M2 Int. 09
FOB-F M2 Int. 10

FOB-F M2 Int 11 FOB-F M2 Dig. 00 Walve 1 Open E—l

FOB-F M2 Int. 12 FOB-F M2 Dig. 01 [T

FOB-F M2 Int. 13 FOB-F M2 Dig. 02 Valve 2 Open E—I

FOB-F M2 Int. 14 FOB-F M2 Dig. 03 [T

FOB-F M2 Int. 15 FOB-F M2 Dig. 04 Valve 3 Open E—I and_1

FOB-F M2 Int. 10 FOB-F M2 Dig. 05 [T and

EE:: xz ::: g FOB-F hiZ Dig. 05 hanOp Enable [T} int ot E=
; FOB-F MZ Dig. 08 ManOp Up [T in2

FOB-F MiZ Int. 19
FOB-F MiZ Int. 20
FOB-F M2 Int. 21 —
FOB-F M2 Int. 22
FOB-F M2 Int. 23

I I R R N TR E TR

Fig. 71 FOB-F/ FOB-IO input resources, placement in layout

The example in Fig. 71 shows the connection between ibalLogic and analog and
digital FOB-F / FOB-IO - input resources.

It is not necessary to connect all resources of a module with one ibaLogic-task.
Each signal can be selected individually and can be placed on the input signal
margin, resp. on the output signal margin.

When needed, all inputs (resp. outputs) of a module can be placed on the input
signal margin, resp. output signal margin by selecting the desired module and
dragging it on the corresponding margin. The following query "Split array into
single signals?" should be answered with "yes".

© iba AG 2009 m

Page 5-4 Manual

5.1.2. FOB-F Buffered Mode

The group of "FOB-F buffered mode" input resources had been invented in order
to process signals of a much higher sampling rate, acquired by the FOB-F card,
than the sample time of a task in ibalogic would permit in continuous mode.

As an example 128 measured values (samples) of a signal which are required to
evaluate a FFT can be processed even when the sample time of the FOB-F card for
the data acquisition is about 1 ms but the sample time of the task is 50 ms

This has been made possible by a special measuring mode of ibalLogic, where
data get buffered by the runtime environment and made available as arrays of a
maximum depth of 256 values for the input resources. In order to prevent loss of
samples the sampling rate of the task, i.e. of the ibaLogic layout, must be higher
than the filling rate of the arrays.

For a reasonable use of this mode of operation select the ibalLogic SignalManager
mode.

There may be other applications which require less than 256 samples or which
don't need always buffered values or not all buffered values all the time. For
these cases there is a special communication interface between the task and the
ibaLogic runtime environment which provides the following inputs:

FFEMTIAT 8 modules with 32 analog inputs (integer) each
FREMTEAT FALSE 8 modules with 32 digital inputs (bool) each
FFEMEIA2Z . _ _ _

FFEMEDA2Z | [FALSE Fillcount is a counter to be increased by 1 everytime

the buffer got filled up and the new buffered data
had been transferred to the task.

FFEFILLCOUNT . .
Datasize is the actual number of samples which had

FFEOATASIZE been buffered.

Cyctime is the actual sample time which had been
used at the fiber optical link. This input is relevant for
the so-called asynchron mode.

100 H A

FFECYCTIME [ps]

Fig. 72 FOB-F buffered mode input resources

m © iba AG 2009

Manual Page 5-5

5.1.3. Signals from Simadyn-D and TDC(FOB-SD / FOB-TDC)
Two types of signals are distinguished in case of a SIMADYN-D process interface:
Q SIMADYN-D Techno (short for TechnoString)

@ SIMADYN-D Lite (16 Modules, each with 32 analog (real) and 32 digital sig-
nals)

(3 Resources |[:| Layer Components | SIMADYN-D TechnoString (for FOB SD / FOB TDC)
=&, Simadyn-0 Techno

The Simadyn-D technostring which is transmitted
through the FOB SD supports the functionality and
structure which is programmed within the Simadyn-D
PLC only. This telegram provides all the necessary data
#-] REFV to configure the QDA settings (i.e. FFT settings, stand
-] Record Status settings, roll diameters etc.) for a 7 stand aluminum or
-] Reserd Color steel mill. The structure is "hardwired" an cannot be
i Resord Message changed. Data will be exchanged by a FOB-SD or FOB-
-] Badup Ralls . .
"CI otk Rolle TDC linking.
--CI Intermediate Rollz The connected Simadyn-D must provide a channel (type
-] Gear Ratios Refresh) with the name Q1DAT and a length of 512
"C' REFLHN Bytes exactly. For further explanations and comments
- REFCHD which signals are used in which ranges please refer the

=@ Simadyn-I Lite
|_——_|D Analog

B3 Module 0 Note: The Q2DAT channel (1920 Bytes) is no longer

-1 Module 1 needed. This channel is replaced by the more practical

E E::z:zi MxPDADAT channels (see next chapter).

DE' Madule 2 Q1DAT_AcgLength =512 // Technostring channel must have 512 bytes!
FH-[J=3 Module 5 Q2DAT_AcgLength = 0 // old data channel, no longer needed

FH-[J=3 Module &

#H-[J3 Module 7

"[L'El Module 2 SIMADYN-D Lite (for FOB SD / FOB TDC)

B Module 8 This resource set is structured very similar to FOB re-
-l Module 10 sources. A set of 8 analog and 8 digital “modules”

Module 11 . . .
E mZd:|: 12 with 32 channels each is provided. Each module can

respective Simadyn-D documentation.

Iu

-l Madule 13 (but must not) be sent by one Simadyn-D CPU.

- Module 14 Note: FOB-SD have different resource types in ibaLogic.
"D_E'_M'Jd”'e 15 For CS22 use the Simadyn-D-Lite resources for FOB-SD

H--D Crigital

3 Module 0 the FOB-SD resource set!

-1 Module 1 In the Simadyn D/ Simatic TDC PLC the data channels to
-1 Module 2 be implemented must be named MOPDADAT to
] Module 3 M7PDADAT with 132 Bytes length each (Type Refresh).

FH-{J=3 Module 4
FH-[J=3 Module 5
-] Madule & Some additional information for correct communication
-1 Module 7 abilities are needed, especially the identifiers for the
[Module 8 channel routing of Simadyn-D. Please refer to

#-{J9 Module @ _
E oo 10 SIMADYN-D documentation.

H-[J= Module 11
#-[J2 Module 12
-2 Module 13
-2 Module 14
-2 Module 15

. e

For setup of FOB-SD and FOB-TDC there is a dedicated dialog under the menu
>File --PCl-Configuration >-FOB-SD/TDC Settings.

Each channel represents one “module”.

© iba AG 2009 m

Page 5-6 Manual

Please check also the iba_drv.cfg file for correct parameterization:

(//comments not to be found in the original file just added to explain the *.cfg
structure contents).

"CS22.." means CS22 or FOB SD or FOB TDC!

FOBSX_AcgAddress = OxE0000 // EOB SD base address

CS22_BgtName = PDAOO1 // name of SD-rack, see “struc” schematics for correct id
CS22_AcgAddress = 0xD0000 // always 11

Simadyn_Sync_Timeout = 15 // timeout here is 15 seconds

Simadyn_Proc_Timeout = 15 7/

C522_0_OwnName = DPDA1A // a name of your free choice to baptize the “PC”
C522_0_Partner = Dl?OOB_ // Coupling partner Dxx00B, where xx indicates
CSZZ_O_SoftwareYerS|on = V420 // where the CS1x motherboard is located; here slot 17
CS22_1 OwnName = DPDA2A // This is the CS22 with the hw-id 01 and the name DPDA2A
€522 1 Partner = DO900B // which is plugged in slot 09 in the rack PDAOO1

CS22_1_SoftwareVersion = V430
CS22_2 OwnName = DPDA3A
CS22_2 Partner = D1200B

CS22_2_SoftwareVersion = V430 // version of the graphic design software “struc”
€522_3 OwnName = DPDA4A // the connected SD-CPU was structured with; here V4.30h
€s22 3 Partner = D1500B // V4.25 must be parameterized with V4.20

CS22_3 SoftwareVersion = V430

CS22_NBoards = 1 // number of active CS22 boards (not FOB-SD”s!)
QLDAT_AcqlLength = 512 // always when using a technostring

Q2DAT_AcqLength = 0 // always 11

MODAT_AcqLength = 132 // Note all channels have fixed structure and length
M1DAT_AcglLength = 0 // shorter channels must be filled up with zeroes
M2DAT_AcglLength = 0 // For every “module” with 32 analog plus 32 binary
M3DAT_AcglLength = 0 // values a channel of 132 bytes length is needed
M4DAT_AcqlLength =0 // MODAT corresponds to modulel, M7DAT to module8
MSDAT_AcglLength =0

M6BDAT_AcqLength =
M7DAT_AcqgLength

Il
[oNe]

m © iba AG 2009

Manual Page 5-7

5.1.4. Input Resources FOB-M/IN

FOB-M process interfaces are used in conjunction with Padu8-M, resp. Padu8-ICP,
analog-digital converters with a sampling rate of 40 us (25 kHz) for the purpose
of vibration monitoring of machines. The following table shows the configuration
of channel 1 (link1) of the first FOB-M module. Up to four channels are possible.

FhIL1 P AL IHU A Number of active Padu8-ICP unit (00 ... 96)

FRILTSAMPLETIME 2000.0 Sample time in ps for this Padu8-ICP unit
FMILA GAIN
FMIL1 GAINZ \
Pl Sl | Actual gain setting for channels 1...8, given in dB
FMIL1 GAING
FMIL1 GAINS
FMILA GAING
FMIL1 GAINT
FMIL1 GAING
FMIL1FREQ1
FMILIFREQZ
FMIL1FREQZ
FMILIFREQ4
FMIL1FREQS
FMIL1FREQS
FMIL1IFREQT
FMIL1FREQS /

| The current setting of each channel is indicated.
|

/

\

| Actual setting of corner frequency (Hz) for channels 1...8

| The current setting of each channel is indicated.

3

Bl A TR R R T A A

I

FhiIL1RChD 5 Current state of "reset" command
FrIL1CMD [[=2580 Current processing command

FMIL1TANA_DATAT

FRIL1ANA_DATAZ \

FMIL1ANA_DATAZ | Analog input channels 1...8 (signed INTEGER)

FhAIL1ANA_DAT AL

FRILTANA_DATAS |

FMIL1ANA_DATAS |

FRIL1ANA_DATAT

FMILTANA_DATAS /

FAILA Dig_DATAd FALSE] |

FMIL1Dig_DaTaz [[FALSE

FMIL1Dig_DATAZ [[FALSE |

FMIL1Dig_DATAS FALSE | Binary input channels 1...8 (BOOL)

FMIL1Dig_DaTAS [l [FALSE

FMIL1Dig_DATAS [[FALSE |

FRIL1Dig_DATAT

FMIL1Dig_DATAS [l [FALSE /
FMIL1DATAvalLABLE [[FALSE - State of input buffer; TRUE = number of values exceeds buffer

FMILTDATASIZE - Size of data (multiples of 10), as soon as data are available

FhalL1LINKAMAILABLE - State of link; TRUE, if link is ok

FMIL1LINKMEASURING [Bl | FALSE - TRUE if link state ok and Padu is activated for measuring
FMILIDATALOST [[FALSE] (FOMEASUREMENTSTART = TRUE)
FMILTDATADVERRUN [[FALSE| . DATALOST = TRUE, if data rush in faster than beeing processed
- OVERRUN = TRUE, if buffer overflow and measurement inter-
rupted

FMIMEASUREMENTACTIUEE{ FALSE TRUE, if FOB-M measurement is running

© iba AG 2009 EL l

Page 5-8 Manual

5.1.5. L2Bx/2 Flatness

This specialized input resource was developed for the connection between iba-
Logic and a SIEMENS flatness control. The link between the two systems is a
Profibus L2-DP with the flatness-PC as Profibus master and ibaLogic (FOB L2B-
card) as slave. In order to start a communication both master- and slave address
must be known and configured. The FOB L2B-card should be parameterized in
one of the flatness modes (see below). No matter which mode is selected, the in-
coming data will always be assigned to the same ibalogic input resources.

The dataset to be transmitted comes with header infor-

E"” Ht"' mation (Coil No., Counter, Zone Width etc.) in order to
ounter }
Wide Zones control the QDA-display.
Small Zones
Width
Height Beside of eight actuators there are up to 80 zone values.
Length .
Speed On the FOB L2B-card, two input resources (processor 1
and 2) are available for connection of up to two flatness
Actuator 1 control PCs.
Actuator 2
Actuator 3 ibaLogic monitors the Profibus-link. An interrupted con-
Actuator 4 nection will be detected and reinstalled automatically.
Actuaters When "offline" (interrupted), ibalLogic freezes and keeps
Actuator© the most recent received data. In this case the QDA-
Actuator 7 . .
flatness profile shows no further alteration of values.
Actuator 8
Note: An interruption of the Profibus-link will not affect
Value 1 the time behaviour of ibalogic.
WValue 2
Walue 3
WValue 4
Yalue 5
Value §

L2B - card configuration

L2B PCl Setup B
| Board 0, Proc &
Frafibus Slave Mode Selection Byte Swap
Mumber
Slave 0 |1D ﬁ IInputs - 57 Integer j o0
Slave 1 I'I'I ﬁ IInputs -Real j ml
Slave 2 |12 = IInputs-S?F\eaI =
Slaves 13 = Ju
|riput
Inputs/0utputs - Integer
! Inputs/Outputs - Real

Inputs/0utputs - 57 Real
= : bl Flatness - Current values
y '"‘ Flatness - Controller values

Flatness - Reference walues
Ei Deactivate
(LRI

| Save configuration I Cancel |

When establishing a connection between ibalogic and the target system, only
the data with reference to the selected mode will be requested. The target system
will adjust itself in compliance to the selected mode. An alternation of the mode
during operation is not permitted.

7 see also chapter 2.6.3

m © iba AG 2009

Manual Page 5-9

5.1.6. Reflective Memory (RM)

The linking of RM-resources and RM-interface is part of the PCI configuration as
described in chapter 2.6.5

Each of the 32 RM-input modules consist of 32 input signals whose signal names
are clearly assigned to the modules. Additionally, each signal has a description
(text) which can be edited in order to improve the technical comprehension by

the user.
Reflective Memory Configuration E
E|{:| In (Signal Mame 5- | Ef;e{ - Bit Activate ‘:' Description
- =@ *‘““‘e" /' RMT AT 00700 00 | | [PMINMOAna 00 il
WoduleD il

[Moduler Rb1402 00104 00 7] & |RMANMOARa O
[l Module2 RMM1A03 00108 0 =] & [RMIN MO &na 02
Bg Module3 Rb1404 0:010c 00 | M| [RMINMOARe 03
- toduled —
5 bodules RMM1A05 00110 0 =] = [RMINMOAna 04
T Modules RMb1406 00114 00 =l & [RMAN MO Ana. 05

Fig. 73 Reflective Memory input resources, connection between module, signal name and description

The descriptions of the input signals appear also in the resource tree and further
in the layout when the signals are used. They also can be found in the tooltip
when placing the mouse cursor over a corresponding connector.

,_f_|.. Reflective Memaory
=] Analeg (Real
E-[I= Modulen

—*]» RMW-IN MO Ana. 01
Rhit-IN MO Ana. 01
Rbi-IN MO Ana. 02
Rhi-IN MO Ana. 03
Fhi-IN MO Ana. 04
Rhi-IN MO Ana. 05
Rhi-IN MO Ana. 05
Rhi-IN MO Ana. 07
Rhi-IN b0 Ana. 08
Fhi-IN 0 Ana. 02

. Rl 1N b0 Ana, 01 [T
RAIN MO Ana. 01 5]
RAIN MO Ana, 02
Rbd-IM MO Ana. 03 d[real 0.0) RMM 140313 ‘BN MO Ana. D2'|
Rivt-IN WO Ana, 04
Rit-IN WO Ana, 05
Rht-IN W0 Ana, 06
RAIN MO Ana, 07
RAHIN MO Ana, 09
Ri-IN WO Ana, 09

Pk e e g s

Fig. 74 Reflective Memory input resources, appearances of signal description

© iba AG 2009 m

Page 5-10 Manual

5.1.7. TCP/IP-TechnoString

The TCP/IP TechnoString functionality is always defined as a certain structure be-
tween two partners. Any kind of data can be transmitted (float values, strings
etc.). This type of technostring needs a hard structure in means of how long (how
many bytes) a specific parameter or part of the technostring is. The assignment is
done with the help of the menu > TechnoString <> TCP/IR.. of ibaLogic. Any part
of the TechnoString can be selected and assigned to a TCP/IP-String variable
(1...16).

As a precondition for using this functionality the TCP/IP communication must
have been activated in the menu >File >System settings “>Other. The checkbox
TCP/IP Activate must be checked off.

1.¢ ibal ogic Version

File Edt Yiew Ewaluste HotSwap TechnoSting Hardware Help T
v
DEEXx8 smenl -y Eal 0N wJ
(3 Resources |D Layer 4| ¥ showEting_1 atoi_1 =
[showSting | [atei]
[#-[&) FOB-F/FOB-I0 -
= TCRAP Sting 1 H
5[5, FOBF Buffered Mode ing 1 EH0121 ozt 0121 [EHomr ot HTr B |
(5 FOB-SDFOB-TDC
G-(=) FOBMAN
[]- LZB/2 Flanheit add_1
(3 L2Bin FLT]
- TCPAP Technostring in1
tE[E5a |
103 Sting Value TR i EEE]
*I> TCRAP String 1
~*{» TCRAP Sting 2
~Hs TCPAP Sting 3
X TepiP Sing 4 showString 2 atoi_2
= "o [Framsting]
TCRAP String 5
I TCRAF Sting 2 t I
X repnr srings ing 2 (H{E7E {0735 HAI0743 [EHorss ——{o735 HHin out BHTE
~Z]> TCRAP Sting7 TCP/IP Technosting [X]
~Hs TCPAP Sting 8
~ TCPIP String 3 Computer Mame : maonde_ws2 Computer Met1D 10.0.2.252
~23r TPAP sting 10 Status connected Technosting Mo.: 1 —
~T% TCPAP String 11 .
~*{» TEPAP Sting 12 TCP /1P Part 40000 TCPZIP TuRning
*]> TCRIP String 13
5y TERAP Sting 14 Test contents Coil)121 ValusiERE =
~Ts TCPAF Sting 15
~T% TCPAP String 16
-] Floatvalue
(5 £8V Technastiing LI
{8 PARALLELIN Selection: 0733
-]p @enerater
- i TCP/IF Sking 1
] System uTC Time " Apply selected area to variable rin
-2 Remote 1D 1 Shaw selected area for varisble TCP/P Sting 3
‘o TCP/P Shing 4
Delete selected area for variable TCPAIP Siing 5
TCPAP Sting &
TrRAR Skina 7 =
Infarmation
’—Select\un digplays vaiable TCPAP Sting 2 |
=
< Clear &l Selections Apply Port Cancel | oK | _,,—I
=) Input Rescuross [E <]]| BY Tas0: s0ms
Evaluation [%]: | 0.6587 Taskd

Fig. 75 Example: Assignment of TCP/IP-String 2 to selected parts of the received TechnoString

The example in Fig. 75 shows how a selected part of the TechnoString (here:
characters "0733") is assigned to the variable "TCP/IP String 2". In order to do so,
please follow these steps:

Choose menu “>TechnoString < TCP/IP.

In the field TCP/IP Port please enter the same port number which is used
by the source system (sender) for this TCP/IP communication.

In order to check the communication the source system may send a sam-
ple string message or you should use the software tool Tcp/pTest...exe
from iba in order to create a sample string and send it to ibaLogic. In any
case the sample string should appear in the dialog TCP/IP Technostring.

Check the option Apply selected area to variable.

With the mouse cursor mark the characters in the displayed TechnoString
which should be assigned to a TCP/IP String variable. (If marking is not
possible please make sure that no technostring is beeing sent at this time.)

l *.-:' © iba AG 2009

Manual Page 5-11

Click on the desired variable in the list of variables (here: TCP/IP String 2)
which should be connected to the marked part of the string. Ready!

In this way all TCP/IP String variables may be assigned to different parts of the
TechnoString.

It is essential that the TechnoString has a fixed structure, i.e. the same data must always be
at the same place inside the string. If, in the example above, "Value733" would be sent in-
stead of "Value0733" all following characters would be shifted by one position to the left
and TCP/IP String variables referring to these following characters wouldn't have the correct
value. As a consequence, leading zeros should be used, if applicable.

For the purpose of TechnoString reception only the above mentioned settings are required.

@ The settings concerning TCP/IP and TechnoString in the menu SFile >PCl-Configuration >
TCP/IP Out Settings have nothing to do with the reception of TechnoStrings. These settings
only refer to the output or sending of TechnoStrings. (see also chapter 5.2.5)

© iba AG 2009 m

Page 5-12 Manual

5.1.8. CSV-TechnoString

The CSV TechnoString is another method to transmit data to ibaLogic. All values
should be separated by commas (CSV = Comma Separated Values). Due to the
commas as separating signs, no fixed format of strings and values is required and
so it's somehow easier and more flexible than the TCP/IP-TechnoString method.
The fields of characters can be generated by MS-Excel or other programs which
are able to create files with comma separated values.

ibalLogic receives the data as a chain of characters (fields) and assigns them
automatically to the CSV-String 1...128. The assignment occurs according to the
order of the source definition.

The source should have the following format:

< field1>,< field2>,.....,.....,< field128> < cr > < If >

Example:

Create a text file named "pipetest.txt" with a contents as follows (4 fields):
CSV-Test,1234,5678,hallo < cr, If >

Don't forget to add the "carriage return” and the "line feed" at the end of the file.
Forward the file to the receiving PC, named "PDA", by using the DOS-command
copy pipetest.txt \\PDA\pipe\qda asciiin

"gda_asciiin" is the keyword for the ibaLogic-Pipe (the three "i"s are correct!).

ibaLogic receives the data as a chain of characters and provides them as input
variables "CSV String 1...128" for further use. The conversion into other data types
is done by converting function blocks, e.g. ASCII to integer.

shomString_1
‘shnwslrir\g |
e sting 1 IV TeA _|—{cevtar MOV Test ElcEacm]
showString_2 at oi_1 add_1
[showsting add
£5V Stiing 2 =)) R e L]
E{rzed] [1z3¢ | |1234 ‘EH — — Emz out[{[FT1z |
showsString_3
‘showslrir\g
osvstings E{EE78 |——[%67s H[5R78 \l:]-lsave [T - 5578
CSY Sting 4 [[hello Pipe Viewer [<]
Connection Connection Actual Total Butes per
Status Time Packages Packages Second
Configuration Fipe bl 0 0 0
Binary Out Pipe #1 : 7’(0 0 0
Binary Out Fipe #2 P 0 0 0
Binary Dut Pipe #3: b 0 0 0
Binary Out Pipe #4 : ?([1} [1} a
ASTI Qut Pipe #1 * 0 0 0
ASCII Dut Pips 2 £ 0 0 0
ASCIl In Pipe #1 : ?(0 403 0
ASCIl In Pipe #2: b 0 5 0
Total : 0 409 0
@ Tk Sy stem ot activated Cancel | : oK I

The state of "ASCII In Pipe #1 and #2" can be monitored by using the menu >
View > Pipes...

!Ll © iba AG 2009

Manual Page 5-13

5.1.9. eCon/PPIO IN - inputs from eCon / eCon32
These input resources are dedicated to the eCon and eCon32 devices from iba.

The eCon devices are small I/O devices which have to be connected to a PC via the
parallel printer port. There are two types available:

eCon: This type consists of 3 analog inputs (Al), 2 analog outputs (AO), 8
digital inputs (DI) and 8 digital outputs (DO).

eCon32: This device provides 32 digital inputs and 32 digital outputs.

Up to two of these devices can be operated in combination by one parallel PC

port.
E--{Ecnn:'PPIom The assignment of eCon devices and input resources is as fol-
= Card 0 .

|_——_|DE| eCon 0 |OWS
----- *{» eCon-IN €O Int. 00 i
..... > Conn €0 Int. 01 Card 0 first eCon at parall port
----- 1> =Con-IN CO Int. 02
-] =Con-IN €O Dig. 00 if eCon, then 3 Al and 8 DI
Con-INCO Dig. 01 .
e if eCon32, then 32 DI
- =Con-IN 0 Dig. 03 . . H
. =Con-IN CO Dig. 04 Card 1 second eCon, connected in line to the first eCon
--F eCen-IN C0 Dig. 05
- eCon-IN C0 Dig. 08 if eCon, then 3 Al and 8 DI
- eCon-IN CO Dig. 07 .

BH «Cona2 0 if eCon32, then 32 DI

----- *{» eCon-IN €O Versicn i i B . .

.....) =ConIN CO Valid The input signals ...Version,Valid and ...Granularity pro-

H._Ci"{s:f“""" Fogend=iy - vide information about the connected device:

- Con 1

D_Hg eoan Version: Firmware version of the device,

..... *]» =Con-INC1 Version . T . : i

..... Hy 2ConIN 1 Valig Valid: Status indication whether input values are valid

----- 5 eCon-IN C1 Granularity

or not,

Granularity: Step width depending on A/D converter resolu-
tion. A 10 bit converter resolution leads to a
step width of 64.

For further informationen concerning the eCon devices please refer to the related hardware
documentation. That documentation also cares about the software engineering.

hw_man_econ_en_A4.pdf

© iba AG 2009 m

Page 5-14 Manual

5.1.10. PlaybackIN - inputs for the playback operation mode

The input resources Playbackin had been invented especially for the operation
with iba data files (dat-files) as signal source. They have to be configured by
module assignment under menu “>File “-Program Settings “>Playback >Module
Assignment.

7 See also chapter 2.4.4 and 3.6.4

Depending on the data type of the values as they are available in the dat-file, the
datatype of the input resources (integer or real) will adjust automatically.

The signal names will NOT be taken from the dat-file. They have to be entered
manually, if necessary.

A quantity of 32 * 32 input signals are provided in order to read dat-files of an
extended ibaPDA-system with 1024 analog and 1024 digital signals.

Using the optional operation mode with hardware I/0 (menu “>File “>System set-
tings >Other, Playback settings) it's even possible to combine the playback inputs
with real online inputs over FOB- or L2B-cards.

Flaybad MO Int. 00
Flaybadk MO Int. 01
Flaybadk MO Int. 02
Flayback b0 Int. 03
32 modules with 32 analog values each (integer or real)
Flaybad b3 Int. 28
Flaybadk W31 Int. 30
Flaybad ki34 Int. 31

Flayback MO Dig. 00
Flaybadk MO Dig. 041

Flayhack WA Dlg. B2 32 modules with 32 digital values each

Playback M31 Dig. 28
Playback M31 Dig. 30
Flayback M31 Dig. 31

Playback Active Playback Active is = TRUE, if the playback mode is active
(menu “>File ->System Settings “>General).

Playback Time in Dat File returns the current position of
PERBEES e [Bes (e the "cursor" in the dat-file. This value is given in seconds,
relativ to the start date of the recording in the dat-file.

m © iba AG 2009

Manual Page 5-15

5.1.11. Generator

The input resource Generator is a practical tool. It's an easy way to generate test
signals of different wave forms.

Dscilloscope_1
Oscilloscope

Gen_Triangle MH0.138462 | ——{0.138462

0138462

Description IGen_TliangIe
Customl Sine I FRectangle Triangle |
Period (sec] |15 [~ Ratio
Amplitude I1 T1 |2
DOffset IU

Cancel

Fig. 76 Input resources, Generator

In order to use a generator signal just select the input resource Generator and
drag it to the input margin of the layout. As many instances of the genarator as
needed may be used with different wave forms at a time.

After drag&drop of the generator input a dialog opens as shown in Fig. 76 and
the following settings can be made:

Q Description

This text entry will appear as name of the generator signal in the layout and
should decribe the signal clearly. Particularly when using many generator signals
this helps keeping clarity.

a Tabs with generator types

Under each tab there is a diagram which shows the characteristics of the corre-
sponding wave form.

All generator types have the following parameters in common:

» Period: Entry of the time of a full period, in sec.
= Amplitude: Amplitude of the signal; there is only one value, taken for both
positive and negative amplitude.
= Offset: Entry of offset (X-axis); if the signal should always be positive, the
offset must have the same value as the amplitude.
Moreover, there are other generator-specific parameters:

© iba AG 2009 m

Page 5-16 Manual

Q Tab Custom

This generator type allows the customized definition of a periodic signal. The pe-
riod will always be devided in 20 even parts (index). For each index (1...20) a sin-
gle value may be entered. In order to ease the work it's possible to choose one of
the other generator types first (Sine, Rectangle, Triangle) and then switching back
to the tab Custom. The wave form of the previous generator type is now the ba-
sis for the customized generator and the values can be adjusted easily. The value
adjustment can be performed by entering values in the index-related field or by
using the mouse on the curve in the diagram.

Q Tab Sine
The sine signal doesn't require further settings.

Q Tab Rectangle

A rectangle signal can be asymmetric in temporal terms. The total duration of a
period is defined by the parameter Period. The two parts of a period can be ad-
justed by the parameter T7 (given in sec.). If the option Ratio is checked, the
value in the field T7 is the ratio of T1/T2.

Q Tab Triangle
The same remarks as for rectangle apply correspondingly.

5.1.12. System UTC Time

ibaLogic works on a so called realtime base, i.e. actions can be triggered by date
and time in ibaLogic. For that, the resource System UTC Time and function blocks,
such as SplitUtcTime, are provided.

Sometimes problems may occur during switch-over from or to daylight saving
time because it depends on how and when the system was configured.

@ Note: Daylight Saving Time:

In the properties of Date/Time-settings in Windows® NT (& Start > Settings > Control
Panel <> Date/Time) you should uncheck the option "automatic daylight saving time".

This has to be done prior to a change to daylight saving time. Otherwise it's useless.

m © iba AG 2009

Manual Page 5-17

5.2 Output Resources
The output resources are devided into the following groups:

| Resources [Ty | La\,rerI:-:-mpu:-nenEI | Repu:-rtl e FOB-10/ OUT

== -0 ouT Standardized analog and digital outputs, 32 groups (mod-
I - AnalogiReal) ules) with 32 outputs each (max. 1024). Outgoing connec-
3] -0 Analogiintegen tion by fibre optical link to:
i {17 wigital

1) PADU (Parallel Analog Digital Units)
2) WAGO Remote-1/O terminals or
3) SM64-/ SM128V-cards

[=-{ = FOB-F OUT Buffered Mode

u BUE
EFDEIFEI £.00 MO Request

uf. BUE
E- FOB-F Bufs0 M1 Request

-] FOB-F Buf.f0 M2 Request e FOB-F/ OUT Buffered Mode

-] FOB-F Buf.f0 M3 Request Predefined set of output variables for control of measuring
- FOB-F Buf./0 W4 Request systems that use buffered measured values from FOB-F cards
-] FOB-F Buf/O M5 Request (e.g. FFT applications).

- FOB-F Buf./0 MG Request
- FOB-F Buf./0 M7 Request

..... *{» FOB-F BufsD Set Datasize e FOB-SD/FOB-TDC OUT

Individual data request for up to eight modules.

Full automatic interface to SIMADYN-D or Simatic TDC con-
~Ed FOB-F But/O Buffer Request trol devices (CS12/13/14 or GDM); eight groups (modules)
""" *{> FOBF BUt/O Cycle Time [us] with 32 outputs each for analog and digital outputs (max
- FOB-F Bufd0 Cycletime Takeower 256).
= . FOB-SIMFOB-TDC QUT
D Analog i FOB-M/ OUT
{27 Digital Predefined set of output variables for 25 kHz-measuring sys-
[—]-- FOB-M OUT tem with FOB-M / Padu8 ICP (vibration monitoring)
H-{J= LiNkD
s LINK e L2B/OUT
-3 LiNkz Standardized analog and digital outputs, 32 groups (mod-
. [Lnkz ules) with 32 outputs each (max. 1024). Outgoing connec-
_____] FOB-M Measurement Start tion by Profibus network to:
== L2 ouT 1) Profibus Slave (e.g. Simatic 57)
D Analag (Real)
D Analog (Integen e TCP/IP-OUT
H-{] bigital TCP/IP output variables, groups of

|:-:|-- TCRAR OUT
- TCPAR Qut PDA
-2 TCPAP Out Techno

1) TCP/IP outputs to PDA-system, 16 modules with 32 ana-
log and digital channels each (max. 512)

[_].. ODAPLR OUT 2) TCP/IP outputs for TechnoStrings, four output strings with
-7 Channels data and four control outputs
- %Channels For output status see menu > View < TCPIP Out...
-0 Wariables
(L] Controls e QDA/PLR-OUT
-] Strip Tags Predefined set of output variables to QDA- or PLR-system.

D haterial Tracking

£-() Reflective Memary e Reflective Memory

-2 Analog (Real) Predefined set of output variables for Reflective Memory

..D Analog (Integer) (RM) connection; 32 groups (modules) of 32 analog (inte-

..{:| Digital ger or real) and 32 digital outputs each (max. 1024). The RM
EI-- aCondPRIO OUT connection requires special hardware components / inter-

(] cardo face cards.

-] card 1 e eCon/PPIO OUT

B- r Flaybade QUT

™ £] Playback Out Restar Predefined set of 32 output variables to the parallel
----- ayba ut Resta

printer port of the PC.
e Playback OUT

One digital "output" for restart of playback.
Input Resuurcesl Functiong |] Dutput Resources

© iba AG 2009 m

Page 5-18 Manual

5.2.1. FOB-10 or FOB 40-Output Resources

The FOB-IO output resources are devided into groups of

Q Analog (real) modules 0...31 or
Q Analog (integer) modules 0..31 and
Q Digital modules 0...31

Each module consists of 32 outputs, i.e. a maximum of 32 * 32 = 1024 analog
and 1024 digital outputs are available.

Example below: Each fibre-optical connection of a FOB-IO or FOB 4o-card is
linked to two modules with 32 inputs, i.e. a total of 64 analog and 64 digital
outputs.

IC_image optical
link= 2 modules
with 32 outputs each
anakbg hinary

Zhoice of proces
cannection

] o ouputana.i output bin. 1
c':',: gg ouputana.?d output bin 2
L=~ | [= 1 olputana.d output bin.3
o0
2 o hdodu e 1
= g“—" H H
= o 1] -
Toptical | 8| 5| 2]
lirk = o o oupu @na. X | ouputbin 32
tetal of = = | |E :
B4 anabgand g — — outputana.l alfput b!n.1
B4bhay = ouputana.z output b!n.z
outputs per | @9 E E ouputana.d | outputbind
.. FOB-40 PCI card sptealink i - - Modde 2
=4 optical links, p . .
ie. 4764 = 256 analog and binary E 20
outputs L LE)|E oup U a3 | ouputbin 37

Fig. 77 FOB 4o, output connections
One optical link can be connected to:
Q one SM 64-10-card (64 analog and 64 digital signals)

Q eight PADU8-output devices (8*8 = 64 analog and 64 digital signals)
Q eight WAGO-terminal heads (8*8 = 64 analog and 64 digital signals)

m © iba AG 2009

Manual Page 5-19

+,f ibal ogic Yersion

Filz Edit ‘iew Ewaluate HaotSwap TechnoSting Hardware Help T

s
DE@X(@(s=eilly = rw EEAlHE :
(5] Resourcesl Layer C s Report =
) FDB—F;’FDB—DID 2Yer-omponen l 1 Repo I :::::—::—:::—1 7] FOB-1040 M1 Int. 01 Gap Output

75 T FOB-1040 M Int. 02 Contraller Out
113 T FOB-I040 M1 Int. 03 Setpoint

(B, FOBF Buffered Made B m- Eid

{8, FOB-SDFOB-TOC
(=, FOBMAN

Ireal_to_int_2

FOB-10/0 M2 Dig. 01 Contr. active

{8, L2842 Planheit
(=, 1281
{8, TCR/IP Technosting

FOB-10/0 M2 Dig. 02 Setpaint activ

FOB-10/0 M2 Dig. 02 Lamp test

FOB-10:0 M2 Dig. 04 Ramp up

{8, £V Technestring
{8, PARALLEL IN

3 Generator

-y System UTC Time
Femate 0

] FOB-10:0 M2 Dig. 05
] FOB-10:0 M2 Dig. 06
] FOB-10:0 M2 Dig. 07
] FOB-10:0 M2 Dig. 08
] FOB-10:0 M2 Dig. 09
] FOB-10:0 M2 Dig. 10
7] FOB-1040 M2 Dig. 11
] FOB-10:0 M2 Dig. 12
] FOB-10:0 M2 Dig. 13
=] FOB-1040 M2 Dig. 14

o1 7] FOB-104D M2 Dig. 15 —
o] FOB-10W0 b2 Dig. 15
in] FOB-10W0 b2 Dig. 17
in2 out [}] FOB-10W0 b2 Dig. 18
in3] FOB-10W0 b2 Dig. 13
] FOB-10W0) b2 Dig. 20
] FOB-1040 b2 Dig. 21
] FOB-10W0 b2 Dig. 22
] FOB-10W0 b2 Dig. 23
] FOB-10H0 b2 Dig. 24
o2] FOB-ICUO M2 Dig. 26
U'M] FOB-10W0 b2 Dig. 25
-] FOB-10W0 b2 Dig. 27
o] FOB-10W0 b2 Dig. 28

/] FOB-10V0 M2 Dig. 28
/] FOB-10V0 M2 Dig. 30
/] FOB-I0V0 M2 Dig. 31

jFDEI—IDJD W2 Dig. 32 =
4 | LI_I

i Input Resources [[E] Functions [] output Resources| | [&] Taso: 1oms

Evaluation [%)] 04736 Tasko

Fig. 78 FOB-10 output signals, example

The example in Fig. 78 shows the connection between ibalLogic and analog and
digital FOB-IO - output resources.

When needed, all outputs of a module can be placed on the output signal margin
by selecting the desired module and dragging it on the corresponding margin.
The following query "Split array into single signals?" should be answered with
IIyes

© iba AG 2009 m

Page 5-20 Manual

5.2.2. FOB-F OUT Buffered Mode

These output resources are dedicated to the FOB-F buffered mode and are used
only for contol of the reading of the buffered inputs. These are no data outputs
to an external process. (see also chapter 5.1.2)

8 digital outputs for a focused module-specific request of buffered
data from the FOB-F interface (optimization of processor load and
reduction of administrative tasks).

FFBOM1REQUEST
FFBOMZREQUEST
FFBOMIREQUEST
FFBOM4REQUEST
FFBOMSREQUEST
FFBOMSREQUEST
FFBOMTYREQUEST
FFBOMEREQUEST

..Datasize is the quantity of measured values (samples) that should
be provided at a time by the ibalLogic runtime environment (max.
256).

..Ratio is an integer multiple of the number of samples in a sample

[0 | [0 FFBODATASIZE time. E.g., Ratio = 2 means, that only every second sample will be
[0 |[dFFBORATIO written to the buffer.
FFEOBUFREQUEST

..Bufrequest is the control output to the ibalLogic runtime envi-
ronment. ..Bufrequest = TRUE means that the quantity of data
with reference to ..Datasize and ..Ratio should be buffered. The
buffer contents should then be transferred to the ibalLogic task

(1000 [FFECCYCTIME and the input FillCount should be incremented by 1.
FFBOCYCTITO o]) .
..Cyctime is the cycle time to be transmitted in asynchron mode at

the fiber optical link (1 ...10 us).

..Cyctito is the control signal (take-over) for the cycle time to be
transmitted in asynchron mode.

5.2.3. FOB-SD / FOB-TDC OUT - Output Resources

The outputs are part of the full automatic interface to SIMADYN-D or Simatic TDC
control devices. Like for the FOB-IO interface card, the output resources for FOB-
SD / FOB-TDC are devided into groups of

Q Analog (real) modules 0...7 and

Q Digital modules 0...7

Each module consists of 32 outputs, i.e. a maximum of 8 * 32 = 256 analog and
256 digital outputs are available.

m © iba AG 2009

Manual Page 5-21

5.2.4. FOB-M /Out - output resources

The FOB-M output resources are used to activate and to parameterize the PADU-
ICP unit (25 kHz measurement). Up to four links to a PADU-ICP (eight channels
each) are supported by ibaLogic (two FOB-M with two links each).

Number of the corresponding PADU-ICP unit [0 | [0 FOB-M L0 PaduNumber
Desired sample time (inus) [0 |[JFOB-M LD Sampletime

/ [|[OFOE-M LD Gaind

| [0]|FOB-MLO Gaind

| [][OJFOB-MLO Gainz

FOB-bi LO & ain3

Desired gain for channels 0...7 (0...63 dB) | E gFDB_M i G:::4

| & J[gFoeM L cains

| [0 | [FOB-MLD GainG

\' [0 |[OFOE- LD &ain?

/ [0 | [OFOB-MLOFreqn

|
|
|
|
|

[|[dFOB-MLOFreql
E [C] FOB-h LD FreqZ
Desired corner frequency for low pass channels 0...7, in Hz | [@____][JFOBMLO Freq
[|[dFOB-MLOFreqd
[0 || FOB-MLOFreqs
[|| FOB-MLO Freqd
_ \ T [FoBML Frea?
..Params Takeover: Trigger for parameter take-over to PADU-ICP —1] FOB-M LO Params Takeaver
Reset the link =] FOB-t LD Reset Link
Data Request: Trigger for data request to PADU-ICP =] FOB-hi LD Data Request
Desired size of data blocks (rounded to multiples of ten, max. [0 | [[JFOB-M L0 Datasize
2050) =] FOB-hi LD Select

..Select: Release measurement for this link

== | FOB-hd hd t Start
...Measurement Start: Start of measurement = BasurEment =ia

For changing parameters the running measurement has to be stopped. Then the
parameters can be transmitted to the PADU-ICP.

The PADU-ICP unit needs approximately 10 sec for internal evaluation of a new

@ gain. After the parameterization is finished the unit sends the new data
continuously to ibalLogic. The process of parameterization may affect other 1/0
interfaces (e.qg. FOB-10) because the ibalLogic-1/0O driver has to be stopped for two
cycles!

Data buffer:

In order to guarantee a proper data transmission of continuous data blocks, dif-
ferent data buffers of fixed size are installed:

Q FOB-M interface, buffer size: 1024 values per channel
Q I/O driver, buffer size: 25.000 values per channel

Q ibalogic, buffer size: 50.000 values per channel

© iba AG 2009 m

Page 5-22 Manual

These figures lead to the resulting sample times, resp. task cycle times as follows:

a PADU-ICP sample time: e.g. 40 ps

Q Size of data blocks: e.g. 2050 values

Q ibalogic task cycle time: e.g. 25 ms

1/25 ms * 2050 = 82.000 values/sec/channelData Read Rate (DRR)

1/40 us = 25.000 values/sec/channelData Generation Rate (DGR)
Rule:

The data read rate should be at least three times the data generation rate!

A loss of one sample cycle must not cause a data loss in ibalogic.

m © iba AG 2009

Manual Page 5-23

5.2.5. TCP/IP-Output Resources
The TCP/IP output resources are devided in two main groups:

= TCP/IP Out PDA, output of data for an ibaPDA-system
= TCP/IP Out Techno, output of TechnoStrings, e.g. to an ibaPDA-system

5.2.5.1. TCP/IP-Out PDA - signal outputs to a PDA-system
Q Analog (real) modules 0...15,
Q Digital modules 0...15 and
a Control control outputs, one per module 0...15

Each module consists of 32 outputs, i.e. a maximum of 16 * 32 = 512 analog
and 512 digital outputs are available for transmission from ibalLogic to ibaPDA via
TCP/IP.

For the purpose of transmission control there are 16 control outputs. The trans-
mission of data can be controlled (start/stop) individually for each channel 0...15
(i.e. for modules 0...15). To enable the transmission of data the corresponding
control output TOUTPDA Send xx must be set on TRUE.

Setup for data output to an ibaPDA-system

In menu >File >-System settings “>Other check off the TCP/IP activation
checkbox.

In the same dialog click on the Configuration button (or alternatively
over menu “>File --PC| Configuration >TCP/IP Out settings) to open the
dialog for the TCP/IP settings. The settings in this dialog only refer to
the output of TCP/IP data. They are not relevant for TCP/IP reception

TCPIP Einstellungen [X]
e FDA | [Module Number——
-~ <8¢ Connector I~ AC"Vated i
=g Connector 1
IPAddess | 10 - 0 - 2 189
= Connector2
- Connector 3 Fart |4UUUU
-t Connector g
k€ Connactar§ PDA module number IU _Ij
kg T ctorfi
nnnnnn Infachannel v

k€ Connectar 7
ot Connactor® Infachannel Port I“UUU'I
%€ Connector
.t Connector 10 Apply to following moduls

<t 0 ctor 44

< Connector 12~
48 Connector 13
48 Connector 14
%6 Connector 15

£cc TechnoSting LI Save configuration I Lancel |

Click on the first "Connector" in the tree just under the branch "PDA".
Each connector corresponds exactly to one module in the TCP/IP Out
PDA output resources.

Now activate this connector by checking off the checkbox in the right
part of the dialog window. Enter IP-address of the target PC (ibaPDA-
PC) and the mutual port number. Due to the individual addressing of
the different connections it is possible to supply different ibaPDA-
systems with data.

Furthermore, it's possible to reassign the output signals to other mod-
ule numbers than 0...15 in the ibaPDA-system. This might be necessary
when these module numbers are already occupied in the ibaPDA-
system by other data sources (Padus etc.).

© iba AG 2009 m

Page 5-24 Manual

As an option the transmission of an infochannel can be enabled or dis-
abled. The infochannel is used for transmission of additional informa-
tion which can be found later in the dat-file.

If data of more than one module (connectors) should be transmitted to
the same ibaPDA-System then click on the button Apply to following
modules. The settings will be copied to the modules (connectors) below
the current one.

Close the dialog by clicking on the button "Apply" or Save Configuration
respectively.

An active connection is indicated by a green symbol.

5.2.5.2. TCP/IP Out Techno outputs
Q Data (string) up to four TechnoStrings 0...3 and
a Control control outputs for each string

Each TechnoString output can contain ASCII-strings of up to 1024 characters, in-
cluding termination (0 hex).

In order to control the TCP/IP transmission a group of control outputs is provided.
Each of the communication channels 0...3 (corresponding to TechnoStrings 0...3)
can be startet or stopped by these control outputs. The transmission of the
strings is enabled when the corresponding control output TOUTTECHNO Send x is
set on TRUE.

Setup for Technostring output

In menu >File >-System settings >Other check off the TCP/IP activation
checkbox.

In the same dialog click on the Configuration button (or alternatively
over menu “>File --PC| Configuration >TCP/IP Out settings) to open the
dialog for the TCP/IP settings. The settings in this dialog only refer to the
output of TCP/IP data. They are not relevant for TCP/IP reception (in-

puts).
TCPIP Einstellungen | x|
- Connectar 4 ;I —Module Humber
gg Connector 5 Activated
gL Connector &
Péddess | 10 - 0 - 2 19
€ Connector 7
&4 Connector 8 Part |15UU
el Connector @
gt Connectar 10 PO module number IU _I;
@€ Connzatar 11 [rfactanme! 1=
e Connector 12
€€ Connactor 13 Infachannel Port IU
e Connector 14
gt Conngctor 15 Apply to following moduls
B
Save configuration I Lancel

Click on the first "Connector" in the tree just under the branch "TechnoS-
tring". Each connector corresponds exactly to one TechnoString, i.e. one
TCP/IP Out PDA output resource.

m © iba AG 2009

Manual Page 5-25

Now activate this connector by checking off the checkbox in the right
part of the dialog window. Enter IP-address of the target PC (e.g.
ibaPDA-PC) and the mutual port number. This port number should dif-
fer from the port number for data transmission. Due to the individual
addressing of the different connections it is possible to supply different
ibaPDA-systems with TechnoStrings.

If more than one TechnoString (connectors) should be transmitted to
the same ibaPDA-System then click on the button Apply to following
modules. The settings will be copied to the modules (connectors) below
the current one.

Close the dialog by clicking on the button "Apply" or Save Configuration
respectively.

+.5 ibaLogic Yersion 3.871 - tcpipTechno™ [Online)

Fle Edt Wew Evaluste Layout HotSwap IschnoSting Hardwars Help L I

DX (& taeElye v on|TEL M
(1 Resources ID Layer Componeni 4 | ¥ —

[z, FoB-0 ouT
-, FOB-F DUT Buffered Mode
(= FOB-SDFOB-TDC OUT

{1 Analog
{2 vigital
- FOB-h OUT
B 28 out showString_1
=2 . TCRIP OUT [showsting
8 lg::z g:: :::hm Technosting P‘TEEh”DStnﬂg Test 0001 ‘ T i [T echnostring-] TCPAP Techne-Out 00
E-[l3 pata Smitch_1
: > TCRAP Techno-Out 00
> TEPIP Tachne-Quto1. a :] TCPAP Techno-Out Send 00
> TCPIP Techno-Outoz .
: jj} TCF/P Techno-Out03 .
#-[]3 centrol
[]- QDAPLR OUT TCPIP Einstellungen [x]
-, Reflective Memal
g Jp—— DUTN -t Connectard ;I i~ Module Numbel_
-, Plavbad OUT << Connectors Aciivzed M|
¢4 Connectar \Pddress | 152 - 188 1 0
<< Connector 7
-2 Connecter Port |1500
<< Connectord b
4% Connactar 10 PDA madule number [0 _|:;‘

<< Connestor 11
DDDDDD Irfechiannsl IS
€€ Cannactor 12

<< Connestor 13 Infachannel Part |1

€< Connector 19
<< Connectar 15 Apply to following moduls

e Connector 1

" %% Connector2

ShegL Connector3
L s

Cancel |

L«

Kl | B
ﬁ Input Resources Functions 4 | »|[[Tas0:50ms
Evaluation [%] I 0.3106 TaskD

Fig. 79 TCPIP TECHNO Out, connection between output signals and TCPIP settings

ibalogic always transmits the TechnoString with an empty termination (0 hex). Therefore, it
is required to enter another termination (0) instead of carriage return in the TechnoString
setup-dialog in ibaPDA.

Moreover, it is strongly recommende that no other user in the TCP/IP network uses the
same port numbers which are used for the TechnoString communication. Otherwise, sys-
tem interferences may occur.

© iba AG 2009 m

Page 5-26 Manual

Setup with older versions of ibaLogic:

ibaLogic versions < 3.83c provide the setup of TCP/IP communication in the ISA
configuration dialog.

View Driver Configuration

General | Huw/ - 154 Bus | Hw/ - PCI Bus | Hw/ - PCI Bus / L28 | Simadyn D #TOC. TCRAR-1 |

Marmne Walue Default White | File
TCRIR q1 1 oo
TCRIP_Outl_dr (1 yoozismemnn ootz aom B 6
TCRIP_Out_Para [oar o 4oor PoALOALMOO K F
TCPIP_ Out2_Adr qu 0100123 40000 W &
TCPIP_Out2_Para [FORZT T 40007 PpAz1.1.1.400m W &
TCRIP_Out3_Adr @m 010012340000 2 &
TCPIP_0uta_Para [Poaz 277 40007 ppAg,21,1,400m P &
TEPIE Dutd_Adr [p00123.40000 g iootzz o P &
TCPIP_Outd_Para [Foee 37740001 PDAt3L1400m Rl &

Fig. 80 TCP/IP setup in former ibalLogic versions

Before releasing the TCP/IP — PDA outputs the corresponding driver must be re-
leased ("TCPIP" = 1). Each output has to be configured with the following entries:
enable output (1), IP-address of the ibaPDA-PC (e.g. 10.0.2.199) and port number
(e.g. 40000).

The TCP/IP-PDA Out-channels should be configured with the parameters
TCPIP_Out1_Adr/ ..._Para to TCPIP_Out16_Adr/ ... Para.

The TCP/IP Techno Out-channels should be configured with the parameters
TCPIP_Out17 _Adr/ ... Para to TCPIP_Out20 Adr/ ... Para.

To get the configuration dialog, use menu < View > ISA Configuration... and en-
ter the required information under the tabs "TCP/IP-I" and "TCP/IP-II". Save the con-
figuration and restart ibaLogic.

This dialog is also still available in up-to-date versions of ibalLogic in the menu
>File, but it's disabled when no ISA-card has been detected.

m © iba AG 2009

Manual Page 5-27

5.2.6. QDA Out- output resources

In order to understand the communication between QDA and ibalogic, please
follow this short introduction to the topic of "Named Pipes". QDA and ibaLogic
use the "Named Pipes"-method for connection over TCP/IP networks.

Basic properties of ibaLogic's communication by "Named Pipes":

The use of Named Pipes offers the
QDA_Z possibility to use multiple synchro-
nized PC-workstations. As a benefit
of this concept, the workstations can
be placed whereever they are
RemoteConnection needed. Usually the first PC-
= 1QDA-Tpipeyida_pipe _1 workstation is placed in the switch-
house or control room. This first
workstation provides the necessary
hardware components for the proc-
ess interface and collects the data to
be measured. More PC-workstations
can be placed on control pulpits,
maintenance stations or whereever it
makes sense.

[N T TR P [T oo g [P Tre e

Pipe

Named

QDA-1

ibaLogic uses the "Named Pipes"-
concept for communication with
many other applications, even with
itself when several ibalogic-
applications are running on different
workstations. "Named Pipes" is a
TCP/IP application layer functionality
which is available on all Windows
NT® workstations.

Remo®e Connection
=Lppegdapipe

gda_pipe

Named-Pipe

HT i
w

The example (left) shows two syn-
chronized QDA-PC-workstations
which are connected with a single
ibaLogic source by Named Pipes. The
entire set of data is sent both to the
local QDA on PC "QDA-1" and to the
second PC "QDA-2".

Process- interface

FOB 4i-P Cl
FOB22-5D
L2BX2-F

EFDB-'JM-F

Remark: The reference "QDA-1" on
the PC QDA-2 is a reference to the
name of the PC and not to the iba-
Logic application! "gda_pipe" is the
address reference for the application.

As soon as a signal has been defined, all other applications which are following in
terms of data flow are able to use the signal name immediately. So, every signal
has to be named only once.

© iba AG 2009 m

Page 5-28 Manual

5.2.7. QDA/PLR OUT - resources

All control and data connections for QDA are managed in the QDA/PLR OUT sec-
tion of the ibalLogic-output resources.

1 Resaurces |r_-| Hierarchywiew | (] There are six groups of resources:

F-5 FOB-10 QUT
[FOB-F OUT Buffered Made

e Channels

--{:| FOB-SvFOB-TOC OUT e 3X-channels
-] FOB-M OUT
(] L2B auT e Variables
-] TCPIP OUT
-7 2parLR OUT e Controls
-D Channels .
-D 3X-Channeals L4 St”p TagS and
D ariables . .
i Controls e Material Tracking

-D Strip Tags
-D M aterial Tracking

5.2.7.1. Channels
ibaLogic supports the use of up to 96 channels which are structured as follows:

Q Value CH # (float) // Signal value

Q Reference CH # (float) // Reference value

a Low. Limit CH # (float) // QDA lower signal limit value
Q Up. Limit CH # (float) // QDA upper signal limit value

The channels can be selected in order to be monitored on one or more QDA-
recorders (1...6).

Like for all other output resources to QDA the names of the outputs can be al-
tered individually by doubleclick on the output name after it has been placed in
the output margin area, e.g. "Value CH #1" — "Tension 1". Once they are con-
nected, they are ,piped” to QDA. Note that the variable names are piped too, so
that QDA would address the signals by their names which you see within the
output resource area.

Remark: If you load another logic plan (layout), the resources will not be updated
with the specific variable names included in the plan, but the logic plan itself has
the given names. So, QDA will always have the correct assignment to signal (i.e.)
but within the resource window it would be called by its default name, e.g. Value
CH 1. Because the channel information data are transmitted every minute, it may
be helpful to restart QDA in order to shorten the update time.

5.2.7.2. 3X-Channels for QDA and ibaVision3X

There are two 3D-channels "Flatness 1" and "Flatness 2". These channels are dedi-
cated to the QDA 3x-window. So, the data, coming from a flatness control system
(e.g. SIEMENS Flatness-PC), only need to be linked with the 3x-channel.

a - ibaLogic supports up to 2 * 128 3D-channels
Q - QDA provides a 3D-window

Q - ibaVision3x supports an unlimited number of windows to be supplied by
the same ibalogic-pipe.

The control variables for the QDA 3x-display are described in the following sec-

tion.

m © iba AG 2009

Manual

Variables

Page 5-29

The set of variables is used for remote parameterization of QDA. Usually, the vari-
ables are part of an input TechnoString which comes by TCP/IP or directly from
the PLC. There are three components of QDA which refer to the variables.

QDA File storing and rolling material information
QDA 3X-window scaling
QDA FFT window roll stand

symbols

Variable name / resource

Meaning in ibalogic

Action in QDA, if connected

Remark

counter

number of received telegrams
[float]

none

Data version number

Version of data set [string]

none

Time stamp

Actual time of data set [string]

Time stamp in recorder strip

Strip id “name” of coil [string] Names file to be stored when | With the ability of string op-

selected in the QDA data stor- | erations, ibalogic can combine

age setup menu (create file | the incoming strip id with a

name by strip id enabled) trigger counter to create

“new"” filenames

Strip length Estimated strip length (constant for | Scales the x-axis of length | If strip length changes while

one strip!) [float] [m] based QDA strips and the 3X- | recording a coil ,QDA can run

window (static option in QDA | into performance problems

general properties enabled) | because of continuously new

scales of the x-axis. Lowest

possible strip length is 200m!
Head length Length of strip head [float] [m] none
Tail length Length of strip tail [float] [m] none

S1: Diameter BUR top

S5: Diameter BUR top

Dimensions of the top backup rolls
for stands 1 to 5 [float] [mm]

S1: Diameter BUR bottom

Dimensions of the bottom backup
rolls for stands 1 to 5 [float] [mm]

S4: Diameter IMR top
S5: Diameter IMR top

Top intermediate roll diameters of
stands 4 and 5 [float] [mm]

S4: Diameter IMR bottom
S5: Diameter IMR bottom

Bottom intermediate roll diameters
of stands 4 and 5 [float] [mm]

S1: Diameter WR top

S5: Diameter WR top:

Dimensions of the top working
rolls for stands 1 to 5 [float] [mm]

S1: Diameter WR bottom

S5: Diameter WR bottom

Dimensions of the bottom working
rolls for stands 1 to 5 [float] [mm]

All these geometric dimen-
sions control the behavior of
the stand symbols in the QDA
FFT-window. With known
stand speeds and gear ratios,
possible “excentrities” of rolls
can be detected.

S1: Thickness set point

S5: Thickness set point

Estimates thickness after stands 1
to 5 [float] [mm] [mm]

none

S1:Reduction (out of roll-
ing directive)

S5: Reduction (out of roll-
ing directive)

Reduction factor between incom-
ing and outgoing material of a
stand in percent [float] [%]

Controls the length forward-
ing speed of the static strips
in QDA.

These factors normally come
from the L2 control system

Small zones
Wide zones
First zone
Last zone

Define the number of small and
wide zones of the flatness measur-
ing system or similar multi trans-
ducer systems [float] [-]

First zone/last zone control the dis-
played width — cut the zones where
no material flow is detected

Number of wide zones (in the
middle of the strip) and small
zones (at the edge of the
strip) to control the 3X-
window layout. Note the sum
small zones + wide zones
must be identical to the num-
ber of connected 3X-Signals!

Message Rec. 1

Message Rec. 6

Name for a recorder strip [string]

The message is displayed in
the corresponding recorder
strip message box

Variables 90 to 97

Recorder status controls 1 to 8

Connected to either recorder
window 1 to 8..

A log. 0 disables the recorder
movement, a log. 1 enables it.

In some QDA versions these
resources must be wired and
enabled to enable time based
recorder movement!
UseRecStat = 1

Variable xyz

Reserved signals

not yet connected to QDA
should not be used !

© iba AG 2009

Page 5-30 Manual

5.2.7.4. Controls

The control resource set actually supports four different functions which control
the QDA recorder.

Q Start Acquisition: Starts the QDA recorder with transition from FALSE to
TRUE

Q Stop Acquisition: Stops the QDA recorder with transition from FALSE to
TRUE

Pause Acquisition: Pauses the recorder while this signal is held TRUE
Print: Prints a hardcopy of the actual screen.

Save CAM: Stores the CAM contents

Length Trigger: Meter pulse for QDA trend-window (length-based statistics)

Head: TRUE to mark the phase when the strip head is rolled

o 0 0 0 o0 o

Steady state: TRUE during the phase of "Steady state" (constant operational
conditions)

Q Tail: TRUE to mark the phase when the strip tail is rolled, initiation of corre-
sponding calculations

The pause function gives you the advantage to save recording capacity while the
mill is stopped e.g. for repair without losing the relation between the coil in the
mill and the corresponding file. While pause is active the recorder just waits until
pause is disabled again to continue recording in the same file. Because of this
behavior, it is obvious that it would be helpful to detect this pause later in the
analyzing phase. To do this, just delay the pause signal for a few milliseconds
with the help of ibaLogic and record the not delayed pause signal.

5.2.7.5. Material tracking (QDA Recorder #6 controls)

To control the complex functionality of an online length-based material tracking
screen a set of controls has been implemented. The counterpart of this function-
ality is the recorder #6 in QDA.

The controls are split in 2 sections — Feeds and Triggers:

Q Feeds (1...8), real:

These controls monitor the material flow to each of the 8 recorder strips in re-
corder #6. Note that each feed corresponds exactly to one strip in this recorder!

Q Triggers, boolean:
Indicate that the “material” has reached just this position

Example:

If “Feed 1" shall control the flow of the material which leaves stand 1 (shown in
recorder #6, strip 1, where counting begins with strip 0) the “Trigger 1" would
indicate that the material has just reached this position.

This part of ibaLogic + QDA requires a good knowledge of the process and the
process control system to establish this part of functionality.

m © iba AG 2009

Manual Page 5-31

5.2.7.6. Strip Tags

This resource set is used to control the QDA strip label contents. For every re-
corder (6) and every strip within a recorder (max 8) a control (data type string) is
available. So, ibaLogic is able to control the label written to the QDA online (and
offline) display. The labels will be stored by QDA. At every start trigger event or
when the strip tag contents has changed the string is transmitted to QDA.

Any ASCII string can be sent to QDA (max 10 characters).

A maximum of 20 labels (prints) per strip and screen is provided by QDA (e.g., if
you define a label which changes every second, and the QDA screen is set to
monitor 60 seconds, you would see 20 labels moving over the screen from left to
right or vice versa).

5.2.8. Reflective Memory (RM)

The link between RM-resources and RM-interface is part of the PCl-configuration
as described in chapter 2.6.5.

Each of the 32 RM-output modules consist of 32 output signals whose signal
names are clearly assigned to the modules. Additionally, each signal has a de-
scription (text) which can be edited in order to improve the technical comprehen-
sion by the user.

Reflective Memory Configuration
B dn < Signal Name >’ -" -D-fEs-e-t Bit Activated "r Description
- B0 Analog Real ROMIANT 00700 00

0 Analog (Integen

RM-OUT MO Ara. 00 il

B0 bigital ROMIa02 [oaios] RM-OUT MOAna, 01
=00 ot ROMIA03 [medice o AM-OUT MOAna, 02
=+ Analog (Reah ROM1404 00 O 00 RM-OUT M0 Ana. 03
H: o ROM1ADS D10 o0 RM-DUT M0 Ana. 04

i3 Modul2 ROM1A06 00114 [
Module3 ROM1407 0x0118 [
{13 Moduled

ROM1A08 D011 00

]2 Medules
-3 Moduled ROM1403 Oz 20 0d

Rk-0UT b0 é&na. 05
Fr-0UT M0 &na. 06
Rk-0UT b0 &na. 07
RH-0UT b0 &na. 02

R | [| R

i i i i Bl i i Bl

Fig. 81 Reflective Memory output resources, connection between module, signal name and description

The descriptions of the output signals appear also in the resource tree and further
in the layout when the signals are used. They also can be found in the tooltip
when placing the mouse cursor over a corresponding connector.

g. Reflactive hMemory
=21 Analog (Real
7 [J:3 Madulen

Xy RM-OUT MO Ana.DD_...___‘____‘___

> RM-OUT WO Ana. 01 T
1> RM-OUT MO Ana. 02
> RM-OUT MO Ana. 03
Rhd-OUT MO Ana. 04
4 Rht-OUT MOAM o5 [0 RM-OUT MO Ana. 01
D e Gl RM-0OUT WO Ana. 02

1> RM-OUT MO Ana. 05 [[reeal 0.0) ROM1A036@1 3 R-0UT M0 dna. 02

1> RM-OUT MO Ana. 07 Fihd LT M0 fna. 04
15 RM-DUT M0 Ana. 02 e

RM-OUT MO Ana. 00

Fig. 82 Reflective Memory output resources, appearances of signal description

© iba AG 2009 m

Page 5-32 Manual

5.2.9. eCon/PPIO OUT - outputs to eCon / eCon32
These output resources are dedicated to the eCon and eCon32 devices from iba.

The eCon devices are small I/O devices which have to be connected to a PC via the
parallel printer port. There are two types available:

eCon: This type consists of 2 analog outputs (AO) and 8 digital outputs (DO).
eCon32: This device provides 32 digital outputs.

Up to two of these devices can be operated in combination by one parallel PC
port.

E--El:»nfpplo ouT The assignment of eCon devices and output resources is as
= Card 0

Bz econo follows:

j} eCon-0UT CO Int. 00

... 3% eCon-OUT CO Int. 01 H

EID et o b 0o Card 0 first eCon at parall port

- eCon-CUT CO Dig. 01 .

.. F eCon-OUT CO Dig. 02 if eCon, then 2A0 and 8 DO

- eCon-CUT CO Dig. 02

5 <con-0UT C0 Dig. 04 if eCon32, then 32 DO

-9 eCon-0UT CO Dig. 05

B Card 1 second eCon, connected in line to the first eCon
eCon- CO0 Dig.

#-{I3 eCen220

5.0 cara 1 if eCon, then 2 AOl and 8 DO
Bl et if eCon32, then 32 DO

fi} EEEEE OUT C1 Int. 00
fi} eeeee OUT C1 Int. 01
e The dlgltaI/analgg conversion of thg analog output values is
5] eCon-0UT C1 Dig. 02 based on a 10-bit resolution (step width on digital side = 64)
- eCon-OUT C1 Dig. 02
- eCon-OUT C1 Dig. 04
- eCon-OUT C1 Dig. 05
- eCon-OUT C1 Dig. 06
-] eCon-CUT C1 Dig. 07
I3 eCon22 1

Because the system is not able to detect the type eCon device which is connected,
the correct settings have to be made in the system settings (“>File >System set-
tings “>Parallel).

A See also chapter 2.5.3

Connected with the selection of the eCon device is a so-called zero mask. The
zero mask forces all outputs of the eCon to zero (0) when the ibalLogic layout is
stopped or switched to offline mode. (safety reasons)

Concerning the analog outputs please note that the output value 0 (zero) corre-
sponds to a hexadecimal value of 0x8000 (high + lowbyte) in the zero mask. The
eCon devices have an analog output range from -10 V to +10 V. A zero mask of
0x0000 would cause an output value of -10 V.

For a better comprehension of the connections between hex-code and output as-
signment please refer to Fig. 83 on the following page.

m © iba AG 2009

Manual Page 5-33

Byte|

Name AD Al d d D D al al

Hex-Code (Bsp.fe.g.) 0x| 0
Bit-Ma_

eCon
Analog Qut AAD

Analog Out AA1 Lowbyte

Digital Qut Mo |

not used

eCon32

DigitalOut No.
DigitalOut MNo.
DigitalOut Mo.
DigitalOut No.

not used

Fig. 83 Hex-addressing of analog and digital outputs for eCon and eCon32 (zero mask)

l..l For further informationen concerning the eCon devices please refer to the related hardware
N\ documentation. That documentation also cares about the software engineering.

hw_man_econ _en_A4.pdf

5.2.10. Playback OUT

One difital output is provided for the playback mode of operation but it's only for
internal use. This output may be set on TRUE or FALSE by the ibalLogic layout in
order to control the playback of a dat-file, respectively to restart the playback.

playing the data file is reset to the file beginning (first sample) and

_F Playback Out Restart, if set on TRUE (impulse), the "cursor" for re-
Flaybadk Out Restart
the playback starts again.

© iba AG 2009 m

Page 5-34 Manual

5.3 OPC - Communication

The intention of the OPC standard interface (OLE for Process Control) is to ad-
vance the integrated use of automation and control systems, field devices and of-
fice applications.

Meanwhile, the OPC interface, which was specified by the "OPC foundation", is
considered as a powerful interface in the Windows® environment and it is sup-
ported by many users and manufacturers. OPC is based on the OLE/COM technol-
ogy from Microsoft Corporation. According to the OPC specification there are
two interface definitions: the "Custom Interface" and the "Automation Interface".

e.g.
C++ application OPC- Custom I/F
Process application

e.qg.
Visual Basic ;
application OPC- Automation 1/

Fig. 84 OPC-Interfaces

OPC server
{e.g. ibalLogic)

As an OPC client, e.g. a Visual Basic-application communicates with the OPC
server by the "Automation Interface". (see also part B, "References": [4], [5])

In order to explain the process of OPC communication the interaction between
ibaLogic and a Visual Basic application is taken for example in the following.

5.3.1. OPC Automation Server Object Model

OPC server

OPCGrows
(collection)

OPCGroup

OPCltems
{collection)

OPCltem

Fig. 85 OPC Automation Server Object Model

| OPC Browser I

m © iba AG 2009

Manual Page 5-35

Object Description

OPCServer A client has to create an instance of the OPCServer object first.
Then the client must connect this instance with the OPC Data
Automation Interface (method ‘connect’). Now, the OPCServer ob-
ject can be used to get general information from the server and to
create and manage OPCGroup objects.

OPCGroups This is a collection of all OPCGroup objects which were created by
a client within one OPCServer object including their methods of
creation, cancellation and management. It also contains the default
properties of the OPCGroup objects at the time of their creation.

OPCGroup An OPCGroup object is a mean to organize data, e.g. an operator
screen or a report. The client requests only the data which are re-
lated to the screen, resp. report, using a specified transmission rate.

OPCltems This is a collection of all OPCltem objects which were created by a
client within an OPCServer object including their methods of crea-
tion, cancellation and management. It also contains the default
properties of the OPCltem objects at the time of their creation.

OPCltem An OPCltem represents a connection to a data source in the server.
Every item consists of a value (type Variant), state information and
timestamp.

OPCBrowser An OPCBrowser object shows the hierarchy which has been in-

stalled on th eserver, i.e. the branches and items. The browser func-
tion is to be used optionally.

5.3.2. Installation of the OPC Driver-DLLs

Before starting a communication between ibalLogic and a Visual Basic application
it is required that all participating PC workstations have the same OPC DLLs (DLL
= Dynamic Link Library) installed. The following DLLs are required:

Opcproxy.dll size: 76kB date: 11/27/02
Opccomn_ps.dll size: 60kB date: 11/27/02
Opcdaauto.dll size: 156kB date: 11/13/00

These three files can be found on the ibaLogic CD-ROM in the folder
\sample_OPC_VB_V103\OPC_InstalN\OPC DLL's.

In order to register the DLLs on your PC please follow these steps:

If you have an up-to-date version of the ibaLogic CD-ROM you'll find there a
DLL-installer program (install.exe) in the folder
sample_OPC_VB_V103\OPC Install\. Just execute this program.

...or copy the entire folder sample_ OPC VB V103 from CD in a folder of your
choice on the harddisk of the ibaLogic-PC.

Browse in Windows Explorer for the program...\ sample OPC VB V103
\OPC InstalNnstall.exe and start it by a doubleclick. The successful registration
of the DLLs will be posted.

If you don't have access to this install program (e.g. with older installations of
ibaLogic) then proceed as follows:

© iba AG 2009 m

Page 5-36 Manual

Copy the above mentioned DLL-files into the system-folder on the harddisk of
all involved PCs: "c:\Winnt\System32" (Windows NT) or c:\windows\system32
(Windows XP) respectively.

Afterwords, the DLLs have to be registered one by one, using the command
"regsrv32". Use the #Start-button in the Windows task bar and Execute...
[Ausfibeen _____________HIE]|

- Geben Sie den Namen des Programms, Ordrers oder
¥ Dokuments an, das bew. der geoffnet werden soll.

Make sure, that the three DLL-files are installed on the OPC server (ibalLogic)
and on the OPC client (Visual Basic), too. In case of using a single workstation,
the DLLs need to be installed only once.

m © iba AG 2009

Manual Page 5-37

5.3.3. OPC-sample application with Visual Basic

Fig. 86

© iba AG 2009

OPC-VB sample application (sample_OPC _VB_V103)

For a better understanding of the OPC-related functions in ibaLogic you'll find a
simple sample application on the ibalogic CD-ROM in the folder
\sample_OPC VB V103.

This folder contains all necessary programs and files for running the ibalLogic
application. An installation of Visual Basic (VB) on the PC is not required.

For those of you who'd like to examine the Visual Basic application (project) and
like to reuse parts of it for their own projects, the relevant programs and files are
stored on the CD as well. In order to open the VB-project an installation of Visual
Basic (Visual Studio) on the PC is required.

Please follow these steps to run the sample application:

If not done yet, please copy the entire folder sample_OPC VB V103
from CD into a folder of your choice on the harddisk of the ibaLogic-PC.

Start ibaLogic.

Open the sample application from the folder
... \sample_OPC VB _V103\LYT-File\sample_layout_OPC_VB_V103.lyt

Switch the layout online by clicking on = (pink background color).

In the Windows Explorer start the VB-project
\sample_OPC VB _V103\VB_application\sample_application_ OPC VB _V103.exe
with a doubleclick.
A new window should appear on the screen, showing the values of the OffTask-
connectors in the ibalLogic layout.

7,2l ngic: Versinn 1 571 - Aeipint* [Cinkine]

Fie E View Evguste Layod HolSwes Jechnolig Hadwar Helo ! v
DESEX & Lo y=r»» TFnLas
o cbc_--oul_mm—ga-

2 OPL VB Booped V1.2
Vsiatis
[422 o | =
[e9zim |
[Hello sy [
| [N

VBt baLopc ibaLoge VB

o LFJ
Il 70 s0ms |
Evatuation [%] 29567 Taskd

OPC sample application, windows

The following OffTask-connectors are defined as outputs to Visual Basic:
OPC Output_Integer Output INT as displayed value
OPC_Output_Real Output Real as displayed value
OPC_Output_String Output of an ASCII character field (text)
OPC_Output_Bool Output as boolean variable (here red/green)

The following variables may be entered in the VB operator- and display window
and called up in ibalogic:

5

Page 5-38 Manual ibaLogic

OPC_Input_Integer Field for entry and display of an integer value in ibaLogic
(enter values by using the up/down arrow buttons)

OPC_Input_Real Field for entry and display of an real value in ibaLogic
(enter values by using the up/down arrow buttons)

OPC_Input_String Field for entry and display of a text (ASClI-string)

OPC_Input_Bool Button for switching (toggle) in ibaLogic

The next figure illustrates the connections of data flow between ibalLogic and VB
and shows the settings of the OffTask-connectors.

Fig. 87 OffTask-connector settings for communication between ibalLogic and Visual Basic

its © iba AG 2009

Manual

55 0PC W 1 8 Beisgel [B Vasiablen]

7 Eventy

2MEA 543 T P Grstted
AN 5 A3 T PH Viesburater: il LescaHustib Lige: 1
AN 543 T P Vinsbler: argrssellel

OPC Server for baloge V1 01

F

Page 5-39

The OPC-connection monitor
is a helpful tool for checking
the OPC-VB-communication.
This tool is not part of iba-
Logic but of the VB-sample
project on the CD.

In four different views (selec-
tion over menu) information
is available about:

- quantity, names and val-
ues of OPC-variables

- status ok / error

- duration of read- and
write access cycles

- event history

- PC-connection

If OPC-client (ibalLogic) and OPC-master (e.g. a HMI-system) are running on different PCs,
communicating over network, please note the security settings when working under Win-

dows XP.

See also chapter 6.2.3.

© iba AG 2009

5

Manual Page 6-1

6 Installation

6.1 Installation of ibaLogic
6.1.1. Installation with install wizard (for eCon only)

Insert the ibalLogic insatllation disk into the CD-ROM drive of your PC. The in-
stallation wizard starts automatically. If not, please execute the program
Setup.exe on the CD.

Choose your preferred language. The language selection will not only affect
the installation dialog but also the documentation and sample applications
which are copied to your harddisk.

Follow the messages of the installation program.

Eventually, a new dialog opens in order to select a parallel printer port which
may be connected to an eCon device. Select the port from a field (left) in the
dialog. Under Windows XP you can check the availability of parallel ports in
your system by using the device manager.

If you need more information about the setup of the parallel port just click on
the corresponding button. Close the dialog with Next.

In the next step select the type of eCon device which may be used. If you plan
to use only one eCon, just select the first one (left). When using two eCons se-
lect both. Click on Next.

You can change these settings any time later.

Click on Finish.

6.1.2. Standardinstallation from CD

Create a folder on the harddisk of your PC, e.g. c:\ibalLogic.
Copy the entire folder \ibaLogic\ from CD into that folder on your harddisk.

If you are working under Windows NT please remove the read-only attribute
from the files after copying. This not necessary when you are using Windows
XP.

If you have received an ibalLogic update by email or if you have downloaded a
new release from the web, please extract all files from the zip-file into the iba-
Logic program folder on your harddisk.

Start ibaLogic with a doubleclick on ..\ibalLogic\ibaLogicVersion.exe in the
Windows Explorer or use the execute command in the start-menu of Win-
dows. ibalogic will create all required subdirectories.
The folder \ibaLogic\configuration\schematics is the standard folder for ibalLogic
application programs which are to be stored as layout (*.lyt) and Structured Text
(*.txt).

The folder \DLLs will later contain all DLLs and the folder \FBs_Macros will contain
all function blocks and macroblocks that will be created during engineering.

© iba AG 2009 m

Page 6-2 Manual

Please feel free to establish a shortcut for ibaLogic on the desktop or in the pro-
gram-start-menu.

This can be useful if the PC is used rather for engineering than for real online
process control, because other programs could be also used on it. But on a PC
which is dedicated to the control of processes or machines, no other PC-
application should be installed (such as office tools, games etc.). In that case an
ibaLogic call in the Windows autostart folder is enough and recommended.

6.2 USB dongle

Due to the wide and increased availability of USB-interfaces in PC-systems iba of-
fers also the software hardlock (dongle) for USB-sockets. As an advantage the se-
rial interface can be used for other applications, e.g. for control connections to
an UPS (Uninterruptable Power Supply), or for communication.

USB is generally supported by Windows XP. USB is usually not supported by Win-
dows NT, Therefore a manual installation is required.
6.2.1. USB dongle and Windows XP

The support for USB-Dongles is to be installed autoamatically by the iba software
products, such as ibaPDA, ibalLogic, dongleupgrade etc.

6 A manual installation is not required.

6.2.2. USB dongle and Windows NT

In order to install manually the USB support on an existing Windows NT installa-
tion, please follow these steps:

Start the program CBSETUP.exe which has come with the dongle and
ibaLogic on the CD-ROM.

In the first dialog choose Install and click Ok.
' x|

Wiauld you like ta install or uninstall
-+ CRYPTO-BOX support?

" Install

(Ymninstall

Ok I Cancel

Choose Yes

CRYPTO-BOX Setup X

< | This setup willinstall CRYPTO-BOK support an your computer,
\‘_t/ Would you like to proceed?

MOTE: You must have Administrator rights ko instal
CRYPTC-BON support!

I [

Select Hardware

Select CRYPTO-BOX USB and click Ok.
x|

Select MARH hardware

% € CRYPTO-BOX Net/S60 (LPT)
' CRYPTO-BOX Versa [LPT)

€ CRYPTO-BOX Serial (SERIAL)
« CHYF‘@BDX UISE CrypT oken (USB)

Cancel |

m © iba AG 2009

© iba AG 2009

Manual Page 6-3

Depending on the operating system you'll be informed if a reboot of the
PC is required for the installation to come into effect. Usually, a reboot
is required with Windows NT, with Windows XP it's not.

Confirm the last message with Ok.

CRYPTO-BOX Setup x|

.
\l() CRYPTO-BOK support was successfully installed on vour machine, You do not need to reboot your PCI

There is also batch routine to get the USB support installed. If you like to use this
routine start the installation as follows:

CbSetup.exe /q /CRYPTOKEN

Please make sure that the USB-interface is enabled in the BIOS of your PC.

If you start ibaLogic and see the following dialog, the reason may be a plugged
USB dongle which could not be detected by ibalLogic because of a missing USB
support.

ibalLogic - No dongle found E

Mo Dongle found!

—Search dongle again
Flease connect dongle for ibalogic to pour computer and click.
on ""Rety'.

—Mo Dongl
‘without dongle, click on "No dongle” ta start No Dongle
ibalogic with reduced functionality

—Aclivate eCon
If pou have an eCon device connected, | PT part [LPT 1 vl -
please select the right LPT port and the) activate eCon
connected devices. Devices: |0 'l

—Inztall driver for USE dongle under ‘Windowst T

If an USE dangle is used under WindawsMT, the driver must be
inztalled once and the computer must be rebooted afterwards. Install USE driver
Under Windows=P the diver i installed automatically.

™ Dot show this dislog again Close ihal ngic

In that case, click on the button Install USB driver.

6

Page 6-4 Manual

6.2.3. Security settings in Windows XP

Some settings concerning communication and networking are more restrictive
in Windows XP compared to Windows NT or other former Windows releases.

Some features of iba's software products take advantage of distributed PCs con-
nected by a network, for example:

Q ibalogic connections between OPC-client and OPC-server

Q Start of ibaAnalyzer triggered by a remote PC, running the postprocessing
command by a DatFileWrite-function block in ibalLogic

Q Use of postprocessing command in ibaPDA to remote PCs

Remote diagnostics with ibaDiag

Some settings should be considered in order to guarantee the proper function of
these services when all or some workstations run on Windows XP in a network:

If possible, the Windows login username, password and user rights
should be the same on all involved workstations, sharing these services.

If there are different logins used on the different workstations, the user
must be registered in the user administration of the participating work-
stations vice versa, including name, password and rights.

On every workstation the parameter Network access: Sharing and secu-
rity model for local accounts (in the Windows local security settings)
should be set on Classic.
You'll find this parameter under Windows XP Start menu “>Settings
SAdministrative Tools Local Security Policy Security Settings “Local
Policies <Security Options.

=10l x|

File Acton View Help
e EE e

@ Security Settings

{28 Account Policies

=8 Local Policies
-8 Audit Policy
{28 User Rights Assignment
* [Security Options

Palicy ~ | Security Setting | :I
Metwark access: Remately accessible registry paths SustermtCurrentControlS et Cantral\ProductOp...
Netwark access: Shares that can be accessed anonpmously COMCFG DFS$

Metwork access: Sharing and security model for local accounts Guest only - local users authenticate as Guest
Netwark security: Do nat store LAN Manager hash value on nest password change Disabled

B+ Public Key Palicies NE“ Network access: Sharing and security model for local accoun.. Ji B g'sa:‘f; & NTLM
-1 Software Restriction Policies N - - Nen - M responses
8, IP Security Policies on Local Computer Bt Local Secuity Setting) Egﬂ_“ate signing

% Metw lients Mo minirmurn

MNety Netwark access: Sharing and security made! for local accounts erv . Na minimum

F =S Disabled

#Ree Disabled

g shul Enabled

m_ Shul IC\assic - local users authenticate as themselves j Disabled

Syt 0 Disabled

Syt G Object creator

] Syt hable
5 Enabled
Syet ks] Enabled
oK I Cancel Apply

m © iba AG 2009

Manual Page 6-5

6.3 System configuration for ISA-cards

For setup of the ISA-driver configuration in ibaLogic select menu “>File ->ISA Con-
figuration

(This command is disabled in Windows XP when no ISA card had been detected.)

The following dialog opens:

View Driver Configuration

General | Hw - 154 Bus | Hw - PCI Bus | Hw - PCI Bus / L28 | Simadyn D / TOC | TCPAP-1 | TCPAP-11| 3964 |

Mame Value Default wiite InFile Mame Walue Default ‘wiite InFile
samplingtime IE'U— &0 v g Enablelrvalidinputs lﬂiﬂ v g
patASCIOUT T M & PatackModeHw [T 0 voo&
WDOB_Enab [o G — -
WDOB_Timer L ¥ o« — o o
TURED_Enab P o Fe - e
TUREO_Man_Try W 100000 v @ |— -
Soft_PLE_Mods o G — o o
Tielkerfie [loos | qomo V= — -
Zero_0n_Broken_Link lD— 1} rd i+ li r S
Pipelut_SubCycle s G -
ParallelPort lD— 1] IV i li In el
ParalleiD eviceb ask |1— 1 icd G li o o
FarallelMulDevd (0%8080000000000000 | 0x2080000000000000 I li r -
ParalleMulDes1 m 0000000000000000 |7 o
Playhack_Made e G — o ‘o

Set Default Read from iba_drv.cfig Save configuration

Fig. 88 ISA-card configuration

Here, the hardware parameters are to be entered.

If you are using ISA-cards go to the tab "HW — ISA Bus" and enter the parameters
according to the hardware settings on the card(s).

Furthermore, the basic sample time has to be entered under the tab "General"
(default setting: 50 ms).

If you use, for example, a FOB-F card the settings must be done as follows:

= portFOBF = 1
= FOBF_AcqAddress = D8000
= Int Vector =5

Note: The settings are only valid in compliance with the hardware settings on the
card (bridges). For the first start of ibaLogic only the entries under the first tab
are required.

In order to save the settings, press the button "Save configuration". ibaLogic will
save the settings in the file iba_drv.cfg.

Restart ibalLogic to apply the changes.

© iba AG 2009 m

Page 6-6 Manual

Check FOB_I/0 B

Firmware Wersion : iba FOB-F ¥1.02 8104 FIDAZ 41.2 FOB-IO

Base Address : Board 1D: —0Opt Link: ~CH:— ~aAnalog:—— -~ Dig.: ﬂ

& «

) G000 i 2w e ol 3 0

£ 0008000 2l C2 gé 15 g

* 0x0DC000 i b4 gl 04 2 0

O [pFOEO iR 05]]

— [1:1 4 1]
[Lisplay—— J

telegram counter E5 : BES73 FOE 110 g; 15 E
telegram counter ES: 5E382 & I_ o 5 0
telegram counter EB 56982 ~ Dn - q q
telegram counter EE: RE352 o : d
;D t;leglra[mMc;:JTler' 3?351 ™ 1/0 Mode activated

sudrate it]: .
Checksum Ermor(z] 0 ;D:?‘I;D t": Couitiar 992
Frarming Erar(z] : 1} UIEr SHikch - ®
Flaatingpoint Data: hao Driver Version : 3400
Check wnring [s] : 494 Diriver nterrupts : 505963
™ Reset Watchdog Intermipts [1./5] : 1000
Watchdog Time Setting o W atchdog Timer o
“watchdog Time Check 43981 ‘w'atchdog Expiration(s] a
‘Watchdog PC counter 1} ‘watchdog min. Timer 1}
“Watchdog proc. counter o W atchdog status 0«0
ey fo— |

Fig. 89 ISA-card, check hardware settings

Check the hardware settings with the menu “>Hardware.

The card is working properly if the interrupt counter shows a rate of approxi-
mately 999 — 1001 interrupts per second.

If a connection has been established between the card and a connected Padu, the
red crosses will be replaced by a green checkmark + at Opt. Link.

m © iba AG 2009

6.3.1.

A\

Manual

Recommended ISA hardware settings

Switch off your computer and unplug it from the power supply. Then open the
chassis of your computer. Therefore refer to the requirements written in your PC

manual.

The hardware components may be permanently damaged by electrostatic discharge. Use
the required safety precautions to handle hardware components.

There are several possible hardware configurations. A maximum of three cards is
supported. It is necessary to install the hardware as shown in the following table.
Note which card has to be selected as interrupt master (underlined and marked
red). Note that only 2 ID s are supported for one card address! Note further that
the PCMCIA card is not supported! FOB-F can be replaced by FOB card.

Application Card 1 Card 2 Card 3
1 Simadyn access FOB SD * - -
Two SD connections C522 address is
0xE0000 mostly
ID must be 0
2 Simadyn access FOB SD * FOB-SD FOB-SD
3 or 4 SD connections CS22 address is 0xE0000; Not supported
*% 0xE0000 mostly ID=1
ID must be 0 Do not forget the
cascade connector!
3 Simadyn plus (several) FOB SD * FOB-F FOB-F
FOB’s CS22 address is 0xDCO000 0xDCO000
0xE0000 mostly ID=20 ID=1
ID must be 0 No IR No IR
4 Simadyn plus Profibus FOB SD * L2B-F
CS22 address is Address: D8000
0xE0000 mostly ID=0
ID must be 0 No IR
5 Simadyn plus Profibus FOB SD * L2B-F FOB-F
plus FOB CS22 address is Address: D8000 Address: DCO00
0xE0000 mostly ID=0 ID=0or1
ID must be 0 No IR No IR
6 Flatness PC or Profibus L2B-F *** - -
app“cation Address: 0xD8000
ID=0
Internal interrupt
7 Flatness PC or Profibus L2B-F *** L2B-F *** -
application Address: 0xD8000 Address: 0xD8000
ID=0 ID=1
Internal interrupt No IR
8 Flatness (or Profibus) L2B-F *** FOB-F FOB-F
plus (several) FOB’s Address: D80000 Address: DC000 Address: DC000
ID=20 ID=0 ID=1
No IR External or Internal No IR
IR
9 Several FOB's FOB-F FOB-F FOB-F
Address: 0xDC000 Address: 0xDC000 Not supported
ID=0 ID=1
External or internal IR No IR
10 Notebook applications | PCMCIA-F**** IR always- -

A 2/2 10 FOB can be handled like a FOB F. Note however, that the interrupt has to be set to INTERNAL only!

* To ensure proper function (i.e. FOB SD) make sure that Segment E is not used, because the FOB-SD card will use the whole
segment!

x* More than one connection means that ibaLogic accesses different CS1x cards. It is not possible to hook up more than one
connection to a CS1x!

*xx Check Profibus DP Slave address properly corresponding to programmed application (i.e. S7) and make sure the mode selec-
tion (S7 integer, flatness) is made correct (see also L2B manual). Only two flatness channels are supported by ibal.ogic and
QDA! When configured as S7 DP Slave, the L2B acts like a FOB-F and must be treated correspondingly.

For software installation of PCMCIA-F see also PCMCIA_F manual.

Never select address range CC000 because if the PC motherboard supports onboard SCSI these addresses might be in use!

Kkkk

© iba AG 2009

Page 6-8 Manual

6.3.2. The Configuration File "iba_drv.cfg"

Before mounting the cards check the address entries and configure your hard-
ware with the addresses you find at your iba_drv.cfg printout:

portFOB = 0 // every "1" indicates that such a card is present in
portFOBF = 0O // the PC (here: FOB-10)

portFOBSD = O

portPROFI = O

portFOBIO = 1

portASCIIOUT = 0

PCMCIA = 0O

FOB_AcgAddress = 0xDC0O00 // for FOB cards

FOB_AcgLength = 0x440

FOBF_AcgAddress = 0xDC0O00 // for FOB-F cards and FOB 10 cards also !Il!
FOBF_AcgLength = 0x3100

FOBSD_AcgAdress = OxE0000 // the FOBSD needs 64kbytes of memory !! check it!
PROFI_AcgAddress = 0xDc000 // for FOB L2B cards

PROFI1_AcgLength = 0x440

PCMCIA = O // for PCMCI-F cards

CS22_BgtName = PDA0O1 // following parameters for FOB-SD and CS22 only !

CS22_AcgAddress = 0xD0000

Simadyn_Sync_Timeout = 15

Simadyn_Proc_Timeout = 15

CS22_0_OwnName = DPDA1A // all these parameters must be set for CS22 and
CS22_0_Partner = D0900B // FOB-SD accordingly

CS22_0_SoftwareVersion = V420

CS22_1 OwnName = DPDA2A

CS22_1 Partner = D0900B

CS22 1 SoftwareVersion = V420

CS22_2 OwnName = DPDA3A

CS22 2 Partner = D1200B

CS22_2 SoftwareVersion = V430

CS22_3 _OwnName = DPDA4A

CS22_3_Partner = D1500B

CS22_3 SoftwareVersion = V430

CS22_Nboards = 0 // here only (1)the number of CS22 must be set

Note: Two FOB cards can have the same address but must then be ,,named”
with two different board ID s (0 and 1 are possible and are supported by the
driver actually). At max 2 FOB cards can be installed within one PC. There must be
always one card with the ID 0 driving the process interrupt Therefore select ei-
ther Interrupt from connected PADU s —in this case the interrupt-switch must be
turned in direction ,,outside” of the PC, or use the card internal interrupt source —
then the switch must be in position directing ,,inside” the PC. The first option has
the advantage that the optical link and the PADU is monitored. Any broken link is
immediately detected. In the case of a broken link the FOB will automatically
generate a , default” interrupt but at a much lower frequency. If ibaLogic would
act strange online (very slow) the check if the connectivity is 0.k. or if the PADU is
switched ON.

Note: The FOB 2/2 |0 must be always configured with Interrupt internal to work
properly.

If you like to choose different addresses do not forget to modify the iba_drv.cfg
file correspondingly!

FOB-SD is an iba card. Note that the FOB SD always needs a free space of
64kbytes in your PC. Note further, that Windows diagnostics does not always
have the correct status of free memory. It can happen although the requested
memory block is marked as free by Windows while the block is not entirely free.

m © iba AG 2009

Manual Page 6-9

This would seriously affect the FOB SD operation. FOB-SD also must generate the
process interrupt.

Do not forget to check all the Simadyn parameters !

Fix all the necessary screws, close the PC rack, boot the PC and start ibaLogic.

6.3.3. System Configuration with PCI-Cards

The hardware installation of the cards is described in the documentation which
comes with the cards.

After the cards have been installed correctly in terms of PC Slots and PCI-
interrupt, start ibaLogic and check the system settings.

Under menu Sfile -System settings press first the button "Autoconfig" in order
to obtain the basic settings for the system.

Then check the different tabs and make sure that unused cards are disabled and
then configure the cards which are used. The dialog windows for the card con-
figuration can be opend by pressing the button Configuration... in the lower right
corner or by using the menu “>File -PC| Configuration “>card. (see also chapter
2.5)

In case of using a FOB-SD / -TDC card, this card should be configured as interrupt
master.

© iba AG 2009 m

Manual

Page 7-1

7.1

Additional information and examples

Sample listing for DLL creation

Please note also the remarks in chapter 3.12.

Due to print-related technical reasons some lines in the following listing are

wrapped. Please read carefully.

7.1.1. dliIForm.hpp

//

//

// Filename: dllForm._hpp

//

// Author: Dipl.-Ing. Hubert Andris
//

// Created: 05-Sep-1998

//

// Description:

// Interface definition for DLL Forms.
//

// External Definitions:

// DLLExport compile for DLL export rather than for DLL
import

//

//

#if 1defined(DLLFORM_HPP)
#define DLLFORM_HPP

#if _MSC_VER >= 1000
#pragma once
#endif // _MSC_VER >= 1000

#include <windows.h>
#include <assert.h>

#if defined(DLLExport)

#define DLL _ declspec(dllexport)
#else

#define DLL __declspec(dllimport)
#endif

#define DLL_INTERFACE_VERSION_HIGH (1 << 16)

LI117777777777777777777777777777777777/777//777777/77//777//7//777/7/7
// Define function prototypes for DLL functions used.

//

// Naming convention:

// PF<type><argl><arg2>...

//

// where

// type =V returns void

// I returns int

// W returns DWORD

// S returns short

//

// arg#n = 1 arg#n is int

// = Pl arg#n is pointer to unsigned int
// = PC arg#n is char pointer

// = PV arg#n is void pointer

//

typedef void (*PFV)(void);

typedef int (*PF1)(void);

typedef DWORD (*PFWV)(void);

typedef int (*PFII)(int io);

typedef short (*PFSII)(int io, int index);

typedef void (*PFVPV)(void *ptrData);

typedef void (*PFVPCI)(char *pName, int cbName);
typedef void (*PFVIIPCI)(int io, int index, char *pName, int
cbName) ;

typedef void (*PFVIIPVIPV)(int io, int index, void *ptrData, int
size,

void *plnstanceData);
typedef void (*PFVIPVIIPV)(int index, void *ptrData, int size,
int valid,
void *plnstanceData);
C*PFLIPVIPV) (int index, void *ptrData, int size,
void *plnstanceData);
(*PFVIPVPI) (int cbSize, const void *pGlobal,
const __int64 *pMilliSeconds);
(*PFVPVIPV) (const void *pGlobal, int cbSize,
void *plnstanceData);
(*PFWPVIPV) (const void *pGlobal, int cbSize,
void *plnstanceData);

typedef int

typedef void

typedef void

typedef DWORD

#define MAX_SERIAL_NO_LENGTH 12
typedef struct

__int64 g_EvalTime;
__int64 g_EvalDeltaTime;

int g_Online;

int g_Unlocked;

DWORD g_Systeml;

char g_DongleSerialNum[MAX_SERIAL_NO_LENGTH];

} globalVvarType;

#if 0
L11171777777777777777777777777/7777777777/77/777777/7/7/7/7///7/7/
// DlIMain

//

// Called from operating system on load and unload.

//

extern DLL BOOL WINAPI DIIMain(HINSTANCE hinstDLL, // handle
to DLL module

DWORD fdwReason, // reason
for calling function

LPVOID IpReserved); // reserved

#endif

L11171777777777777777777777777/7777777777/77/7/7/7/7/7/7//7/7///7/7/
// GetDllVersion

//

// Each DIl shall have a unique version number

//

// Returns:

// hiword major version number: describes the program

// interface
V4 loword

minor version number: describes the semantic

extern DLL DWORD GetDIlVersion(void);

LI11717777777777777777777777777777777/77/777777/7/777/777//7//77/7/7/
// General parameters for subsequent functions:

// Each instance of the DIl form has its own data pointer, which
// points to

// dynamicaly allocated memory of size returned by the previous
// call to

// GetlnstanceDynamicDataSize() -

// Parameter:
// void *plnstanceData

// The DIl has read-only access to global variables of Signal
// Manager
// application, which may be required for the evaluation.

// Currently defined global variables:

//

//+ + +
//] offset | bytes | type | description

/7] + + + +
/7] 0] 8 | __int64 | time in 0.1 milliseconds

/7]]] | relative to last

/7] | | | InitEvaluation call

//+ + + + +
/7] 8] 8 | __int64 | time in 0.1 milliseconds

/71]] | relative to last

/7]]] | call to Evaluate

//+ + + + +
/71 16] 1 | char | = 0: layer is offline/

/7]]] | = 1: layer is online

//+ + + + +
/71 17] 3 | none | unused (all bytes 0)

//+ + + + +
/71 20 | 1 | char | = 0: layer is locked/

/71]] | = 1: layer is unlocked

/7] | | | If locked, DLL shall NOT change
/7]]] | any default value!

//+ + + + +
/7] 21 | 3 | none | unused (all bytes 0)

//+ + + + +
/71 24] 4 | DWORD | reserved

//+ + + + +
/7] 28 | 12 | char | index 0 .. 7 : serial number

/71 | | | index 8 :=0

/7] | | | index 9 .. 11 : reserved

//+ + + + +
//

// Parameter:

V4 pGlobal pointer to global variables array

// cbSize number of available global variables

//
LI11777/7/7/7//77777

L11171777777777777777777777777/77777777/7/77/7777/7/7/7/7///7///7/7/
// GetlnstanceDynamicDataSize
//

© iba AG 2009

Page 7-2

// Each instance of the DIl formula has its own pointer, which
// may point to

// any data of any size. This function returns the size for that
// memory.

// Memory allocation/deallocation is completely performed by the
// calling

// application.

//

// Returns:

// required memory size in bytes
//

extern DLL int GetlnstanceDynamicDataSize(void);

LI117177/7//7/7/777//7//77
// GetDlIDescription

VZ4

// Parameter:

// pDesc buffer to receive description as ASCIIZ string
// chDesc size of buffer (including terminating Null byte)
//

extern DLL void GetDlIDescription(char *pDesc, int chDesc);
L1117 777777777777777777777777777777777777777/7/7/777//7/7/7/7/7/
// GetCount

Va4

// Parameter:

// io 0 = input, 1 = output

Va4

// Returns:

// number of inputs/outputs (1..128)
Va4

extern DLL int GetCount(int i0);

LI1171777/77/7/7/77/77/77/7/7/7

// GetName

//

// Parameter:

// o 0 = input, 1 = output

// index 0. .GetCount(io)-1

// pName buffer to receive name as ASCIIZ string

// cbName size of buffer (including terminating Null byte)
//

// Note: Each input/output name must to be unique!

extern DLL void GetName(int io,
cbName) ;

int index, char *pName, int

L11171717777777777177777777777777777/7/77777/7/7/7/77//7/7/7/7/77/
// GetDescription

//

// Parameter:

// io 0 = input, 1 = output

// index 0. .GetCount(io)-1

// pDesc buffer to receive description as ASCIIZ string
// cbDesc size of buffer (including terminating Null byte)
//

extern DLL void GetDescription(int io,
int chDesc);

int index, char *pDesc,

LI11711777777777777777777777777777777777/7777777//777/777/7/7/7/77777

// GetType

//

// Parameter:

// io 0 = input, 1 = output

// index 0. .GetCount(io)-1

//

// Returns:

//+ + + +
//| type | iecl13l type | size of value in bytes

}/+ + + +
/7] 1 | BOOL | 1

/7] 3 | INT | 2 |
771 4| DINT] 4 1
/7] 8 | UDINT | 4

//] 10 | REAL | 4 |
/71 11 | LREAL] 8 1
/71 12 | TIME | 8]
/7] 16 | STRING 1 1024 (including terminating null) |
/71 19 | DWORD] 4 1
/7] 22 | ARRAY | total element count * size

/7] | | of element 1
//+ + + +
//

// Note:

// Enumeration valType in “value.hpp® can be used for

// convenience.

// 1T 22 (ARRAY) is returned, then a call to GetArrayHeader
// will follow.

//

extern DLL WORD GetType(int io, int index);

L1117 77777777777777777777777777777777777/77777/77/7/7/7/77/7/77/777/7
// GetArrayHeader

Va4

// Called if GetType() returned 22 (array type)
//
// Parameter:

// io 0 = input, 1 = output

// index 0. .GetCount(io)-1

// pBuffer pointer to array header:

//+ + + +
//| Offset | Type | Description

//+ + + +
//1 O | WORD | Element type (see description of GetType) |
/7l 2 | BYTE | reserved (e.g. for synchronization flag) |

Manual

/7] 3 | BYTE | reserved (e.g. for valid flag) |
/7] 4 | DWORD| array dimension (1..4) 1
//]1 8 | DWORD| Start Index of O-th subscript

/7] 12 | DWORD| Stop Index of O-th subscript

/7] .. | | |
//] 8+n*8 | DWORD| Start Index of n-th subscript]
/7] 1 I (n < dimension) |
//]| 12+n*8 | DWORD| Stop Index of n-th subscript 1
/7] | | (n < dimension) |
/7] | | |
//+ + + +
//

// cbBuf sizeof buffer in bytes sufficient for max array
// dimension of 4

//

// Note: These functions are only called once for initial

// initialization of

// the dIl form instance.

// The total element count is calculated via:

// Sum over all subscripts: (n-th stop index - n-th start
// index + 1).

// For multi-dimensional arrays, the rightmost subscript is
// varying

// most rapidly with respect to the address offset of the
// element value.

Va4 e.g.: a : ARRAY[1..2,2..4] OF INT;

// total element count = (2 -1+ 1) + 4 -2+1) =6
// + + +

// | element | offset in bytes |

Va4 + + +

// | a[1,2] | 0*2=0 |

Va4 | a[1,3] | 1*2= 2 |

Va4 | a[1,4] | 2*2= 4 |

// | a[2,2] | 3*2=6 |

Va4 | a[2.,3] | 4 *2= 8 |

VZ4 | a[2,4] | 5*2 =10 |

// + + +

// For arrays, the only element types permitted are:

// BOOL, INT, DINT, UDINT, REAL, LREAL, TIME and DWORD.

//
extern DLL void GetArrayHeader(int io, int index, void *pBuffer,
int cbBuf);

LI11717777777777777777777777777777/777777/77/777/777//77/777//77/77/7
// GetDefaultvalue

//

// Parameter:

// io 0 = input, 1 = output
// index 0. .GetCount(io)-1

// pBuffer pointer to buffer to receive value(s):

//+ +
//] type | iecll3l type | size of buffer in bytes]
//+ + + +
/7] 1 | BOOL | 1

/7] 3 | INT | 2]
/7] 4 | DINT | 4 |
/771 8 | UDINT] 4]
/7] 10 | REAL | 4]
/71 11 | LREAL | 8

/71 12 | TIME] 8]
/7] 16 | STRING | 1024 (including terminating null) |
/7] 19 | DWORD | 4 |
/7] 22 1 ARRAY | total element count * size

/7] 1 | of element]
//+ + + +
// cbBuf sizeof buffer in bytes

// plnstanceData see description above

//

// Note: These functions are called once for initial

// initialization of the dll

// form instance (plnstanceData is NULL).

// For outputs, this function will be called if Evaluate()
// exited with

// bit0 of return value = 1 (pInstanceData is not NULL).
// For arrays, the only element types permitted are:

// BOOL, INT, DINT, UDINT, REAL, LREAL, TIME and DWORD.

//

extern DLL void GetDefaultvValue(int io, int index, void *pBuffer,
int cbBuf,

void *plnstanceData);

LI117777777777777777777777777777777777777/777/777//77/777//7//777//7
// SetlnputValue

//

// This function is called once for each input index before each
// evaluation.

//

// Parameter:

// index 0. .GetCount(1)-1

// pBuffer pointer to buffer to read value(s)

/7 It has the same format as described in

// GetDefaultvalue

// cbBuf sizeof buffer in bytes

// bvalid valid flag of value: 0 = valid, not 0 = invalid
//

extern DLL void SetlnputValue(int index, void *pBuffer, int
cbBuf, BOOL bvalid,
void *plnstanceData);

LI11711777777777777777777777777777/777777/77/777/7/7//777//7//77/777
// GetOutputValue

//

// This function is called once for each output index after each
// evaluation.

//

// Parameter:

© iba AG 2009

Manual

Page 7-3

// index 0..GetCount(1)-1

// pBuffer pointer to buffer to read value(s)
// It has the same format as described in
// GetDefaultValue

// cbBuf sizeof buffer in bytes

// plnstanceData see description above

//

// Returns:

// O if output value is invalid

// 1= 0 if output value is valid

VZ4

extern DLL BOOL GetOutputValue(int index, void *pBuffer, int
cbBuf,
void *plnstanceData);

L1117177777777771777777777777777777777777/7/7/7/7/77/7/7/7/7/7/7/
// InitEvaluation
//

// Do specific initialization of any local data.

// Values are already set to their defaults.
//

// Parameter:

// pGlobal see description above
// cbSize see description above
// plnstanceData see description above
VZ4

extern DLL void InitEvaluation(const void *pGlobal, int cbhSize,
void *plnstanceData);

LI1171777771777777777777777777777777777777777/7/7/777/7/7/7/77777

// Evaluate

//

// Calculate all output values and their corresponding valid
// bits.

//

// Parameter:

// pGlobal see description above

// cbSize see description above

// plnstanceData see description above

Va4

// Returns:

// Bit0 = 1: DLL has changed default values

// (SET_DEFAULT function)

// causes call to GetDefaultvalue() for all 1/0"s
// Bitl..31 = 0 (reserved)

//

extern DLL DWORD Evaluate(const void *pGlobal,
void *plnstanceData);

int cbSize,

LI11117777777777777777777777777777777777/77/777/7/77/77//7//77/77/
// ExitEvaluation
//

// Called immediately before the dlIl form instance is removed.

// Do any form instance specific cleanup.

//

// E.g.: The memory set by SetlnstanceDataPointer() may contaion
// another pointer to dynamically allocated memory in

// InitEvaluation(). Here is the point to deallocate that
// memory .

//

// Note: Do NOT deallocate the memory set by

// SetlInstanceDataPointer()! This

// memory is managed by the calling application.

//

// Parameter:

// pGlobal see description above

// cbSize see description above

// plnstanceData see description above

//

extern DLL void ExitEvaluation(const void *pGlobal, int chSize,
void *plnstanceData);

#endif // DLLFORM_HPP

7.1.2. SampleDLL.cpp

Filename: sampleDIl.cpp

Author: Dipl.-Ing. Hubert Andris

Created: 05-Sep-1998
Description:
Required definitions for specific DLL Formulas.

External Definitions:
DLLExport compile for DLL export rather than for DLL
/ import

#define DLLExport
#include "dllForm.hpp"

#define NUM_INPUTS 2
#define NUM_OUTPUTS 3
#define ARRAY_SIZE 10

static int ninstance = 0;

L11171777777777777777777777777/7777777777/7/77777//7/7/7/7//7/7/7/
// data structure used for formula instance specific data
typedef struct dynamicData
{

struct dynamicData()

{ memset(this, 0, sizeof(*this)); }

BOOL inputValueValid[NUM_INPUTS];

float inputvValue[NUM_INPUTS][ARRAY_SIZE];

float inputDefaultValue[NUM_INPUTS][ARRAY_SIZE];
BOOL outputValuevValid[NUM_OUTPUTS];

float outputValue[1][ARRAY_SIZE];

float outputDefaultvValue[1][ARRAY_SIZE];

char Dongleld[9];

int ninstance;
} dynamicDataType;

LI/11177777777777777777777777777777777777/777/777777/77/777/7//7/777

// Common data for all instances

static const char strDescription[] = "Sample DLL for ibalLogic
vi.2";

static const char strDongleDefault[] = "none";

static const char inputName[NUM_INPUTS][32] =
{

a’,
o
IS
static const char outputName[NUM_OUTPUTS][32] =

“out”,
"instance'",
"dongleNumber',

static const char inputDescription[NUM_INPUTS][32] =

"ist
"2nd
}:

static

input array",
input array",

const char outputDescription[NUM_OUTPUTS][32] =

"'dot product”,
""instance number',
"Dongle Number™,

3

L17171777777777777777777777777/7777777777/77/777777/7/7/7/7///7/7/
// DlIMain

//

// Called from operating system on load and unload.

//

DLL BOOL WINAPI DIIMain(HINSTANCE hinstDLL,
module

// handle to DLL

DWORD fdwReason, // reason for

calling function

{
BOOL bRet = FALSE;

LPVOID IpReserved) // reserved

// Perform actions based on the reason for calling.
switch(fdwReason)

case DLL_PROCESS_ATTACH:
// Initialize once for each new process.
// Return FALSE to fail DLL load.
bRet = TRUE; // Successful DLL_PROCESS_ATTACH.
break;

case DLL_THREAD_ATTACH:
// Do thread-specific initialization.
bRet = TRUE; // Successful DLL_THREAD_ATTACH.

© iba AG 2009

15

Page 7-4

break;

case DLL_THREAD_DETACH:
// Do thread-specific cleanup.
bRet = TRUE; // Successful DLL_THREAD_DETACH.
break;

case DLL_PROCESS_DETACH:
// Perform any necessary cleanup.
bRet = TRUE; // Successful DLL_PROCESS_DETACH.
break;

return bRet;

3

L1111 777777777777777777777777777777777777/7777/77//77/77//77/77/
// GetDllVersion

//

// Each DIl shall have a unique version number

//

// Returns:

// hiword major version number: describes the program
// interface

// loword minor version number: describes the semantic
DLL DWORD GetDIIVersion(void)

return (DLL_INTERFACE_VERSION_HIGH | 1);

L11171717777777777177777777771777777/7777777/7/7/7/77/7/7/7/7/77/
// General parameters for subsequent functions:

//
Va4
// Each instance of the DIl form has its own data pointer,
// which points to dynamicaly allocated memory of size

// returned by the previous call to

// GetlnstanceDynamicDataSize().

// Parameter:
// void *plnstanceData

// The DIl has read-only access to global variables of Signal
// Manager
// application, which may be required for the evaluation.

// Currently defined global variables:

//

//+ + +
//| offset | bytes | type | description

/7] + + + +
/7] 0 | 8 | _int64 | time in 0.1 milliseconds

/7] | | | relative to last

/7] | | | InitEvaluation call

//+ + + + +
/7] 8 | 8 | __int64 | time in 0.1 milliseconds

/7] | | | relative to last

/7] | 1 | call to Evaluate

//+ + + + +
/7] 16 1 1 | char | = 0: layer is offline/

/7] | 1 | = 1: layer is online

//+ + + + +
/7] 17 1 3 | none | unused (all bytes 0) 1
//+ + + + +
/7] 20 | 1 | char | = 0: layer is locked/

/7] 1 1 | = 1: layer is unlocked

/7] | | | If locked, DLL shall NOT change |
/7] | | | any default value!

//+ + + + +
/7] 21 | 3 | none | unused (all bytes 0) 1
//+ + + + +
/7] 24 1 4 | DWORD | reserved

//+ + + + +
//

// Parameter:

// pGlobal pointer to global variables array

// cbSize number of available global variables

//
LI1777/7/7/777/77/7/7/7/777

L11171717777777777177777777777777777/7777777/7/7/7/77/7/7/7/7/7/7/
// GetlnstanceDynamicDataSize

//

// Each instance of the DIl formula has its own pointer,

// which may point to any data of any size. This function

// returns the size for that memory.

// Memory allocation/deallocation is completely performed by

// the calling application.

//

// Returns:

// required memory size in bytes
//

DLL int GetlnstanceDynamicDataSize(void)

return sizeof(dynamicDataType);

LI117177777777777777777777777777777777777/77/777/77//77/777//77/7/7
// GetDlIDescription

//

// Parameter:

// pDesc buffer to receive description as ASCIIZ string
// cbDesc size of buffer (including terminating Null byte)
//

Manual

DLL void GetDlIDescription(char *pDesc, int cbDesc)

strncpy(pDesc, strDescription, chDesc);

LI1171717777777777777777777777777777/7777/7/7/7/7/7/7/7/7/7/7///7/
// GetCount

//

// Parameter:

// io O = input, 1 = output

//

// Returns:

// number of inputs/outputs (1..128)
//

DLL int GetCount(int io)

{

int iRet;
if (io==0)
{
iRet = NUM_INPUTS;

else

iRet = NUM_OUTPUTS;

return iRet;

3

L1117 1777777777777777777777777/777777/77/7/7/77/77/77/7/7/7/77/7/7/
// GetName

Va4

// Parameter:

// io 0 = input, 1 = output

// index 0. .GetCount(io)-1

// pName buffer to receive name as ASCIIZ string

// cbName size of buffer (including terminating Null byte)
//

// Note: Each input/output name must to be unique!
DLL void GetName(int io, int index, char *pName, int cbName)
if (io==0)
strncpy(pName, inputName[index], cbName);
else

{
strncpy(pName, outputName[index], cbName);

L11171717777777777777777777777777777/7777/7/7/7/7//7/7/7/7/7///7/
// GetDescription

//

// Parameter:

// io 0 = input, 1 = output

// index 0..GetCount(io)-1

// pDesc buffer to receive description as ASCIIZ string
// cbDesc size of buffer (including terminating Null byte)
//

DLL void GetDescription(int io, int index, char *pDesc, int
cbDesc)

if (io==0)

strncpy(pDesc, inputDescription[index], chDesc);
else
{
strncpy(pDesc, outputDescription[index], cbDesc);

3
L11171717777777777777777777777/77777/7777/7/7/7/7/7/7/7/7/7/7/7/7/
// GetType
//
// Parameter:
// io 0 = input, 1 = output
// index 0. .GetCount(io)-1
Va4
// Returns:
//+ + + +
//] type | iecll3l type | size of value in bytes]
//+ + + +
/771 1 | BOOL | 1 |
/7] 3 | INT | 2 |
/7] 4 | DINT | 4 |
/771 8 | UDINT] 4 |
//] 10 | REAL | 4 |
/7] 11 | LREAL | 8
/71 12 | TINE | 8 |
//] 16 1 STRING 1 1024 (including terminating null) |
/7] 19 | DWORD | 4 |
/7] 22 | ARRAY | total element count * size of
/71 1 | element]
//+ + + +
VZ4
// Note:

// Enumeration valType in "value.hpp® can be used for

// convenience.

// 1T 22 (ARRAY) is returned, then a call to GetArrayHeader
/7 will follow.

VZ4

DLL WORD GetType(int io, int index)

© iba AG 2009

Manual Page 7-5

{ // For outputs, this function will be called if
WORD wRet = 22; // all inputs/outputs are arrays V4 Evaluate() exited with bit0 of return value = 1
// (pInstanceData is not NULL).
if (io==1) // For arrays, the only element types permitted are:
V4 BOOL, INT, DINT, UDINT, REAL, LREAL, TIME and DWORD.
if (index == 1) //
wRet = 4; DLL void GetDefaultValue(int io, int index, void *pBuffer, int
if (index == 2) cbBuf,
wRet = 16; void *plnstanceData)
if (index == 3) { 77/ all inputs/outputs same type and defaults
wRet = 1; int i;
}
if ((io == 1) && (index == 1))
return wRet;
} *((int *) pBuffer) = 0;
L1117177777777771777777777777777777777777/7/7/7/7/77/7/7/7/7/7/7/ else if ((io == 1) && (index == 2))
// GetArrayHeader {
// strcpy((char *) pBuffer,strDongleDefault);
// Called if GetType() returned 22 (array type)
// else if ((io == 1) && (index == 3))
// Parameter: {
// io 0 = input, 1 = output *((BOOL *) pBuffer) = FALSE;
// index 0..GetCount(io)-1 3
// pBuffer pointer to array header: else
//+ + + + {
//| Offset | Type | Description 1 for (i = 0; 1 < ARRAY_SIZE; ++i)
//+ + + + { 7/ for multiplication, default 1 is convenient
/7] O | WORD | Element type (see description of GetType) | ((float *) pBuffer)[i] = 1.0;
/7] 2 | BYTE | reserved (e.g. for synchronization flag) 1
/7] 3 | BYTE | reserved (e.g. for valid flag)] 3}
/7] 4 | DWORD| array dimension (1..4) | ¥
/7] 8 | DWORD| Start Index of O-th subscript
/7] 12 | DWORD| Stop Index of O-th subscript
VZ4 . | | | | /777777777777777777777777777777777/7/77777777/7/7/7/7//7/7/77/777/
//] 8+n*8 | DWORD| Start Index of n-th subscript 1 // SetlnputValue
/7] 1 | (n < dimension)] //
//] 12+n*8 | DWORD|] Stop Index of n-th subscript] // This function is called once for each input index before
/7] 1 | n < dimension) 1 // each evaluation.
/7] | | 1 /7
//+ + + + | // Parameter:
// // index 0..GetCount(1)-1
// cbBuf sizeof buffer in bytes sufficient for max array // pBuffer pointer to buffer to read value(s)
// dimension of 4 // It has the same format as described in
// // GetDefaultValue
// Note: These functions are only called once for initial // cbBuf sizeof buffer in bytes
// initialization of the dIl form instance. // bvalid valid flag of value: 0 = valid, not O = invalid
// The total element count is calculated via: //
// Sum over all subscripts: (n-th stop index - n-th start DLL void SetlnputValue(int index, void *pBuffer, int cbBuf, BOOL
// index + 1). bvalid,
// For multi-dimensional arrays, the rightmost subscript void *plnstanceData)
// is varying most rapidly with respect to the address {
// offset of the element value. dynamicDataType *pData = (dynamicDataType *) plnstanceData;
// e.g.: a : ARRAY[1..2,2..4] OF INT;
// total element count = (2 -1 +1) + 4 -2+1) =6 if (pbata !'= NULL)
// + + +
// | element | offset in bytes | pData->inputValuevalid[index] = bvalid;
Va4 + + +
// | a[1,2] 1| 0O*2= 0] assert(cbBuf == sizeof(pData->inputValue[index]));
// |1 a[1.3] 1| 1*2= 2 1 memcpy(pData->inputValue[index], pBuffer, sizeof(pData-
// |1 a[1,4] | 2*2= 4 1 >inputValue[index]));
// | a[2,2] | 3*2=6 | 3}
// | a[2,3] | 4 *2= 8 | }
VZ4 | a[2,4] | 5*2 =10 |
// + + +
// For arrays, the only element types permitted are: L1171 17777777777777777777777/7777777/77777/77/77/7//7//7//7//77/77/7
// BOOL, INT, DINT, UDINT, REAL, LREAL, TIME and DWORD. // GetOutputValue
// //
DLL void GetArrayHeader(int io, int index, void *pBuffer, int // This function is called once for each output index after
cbBuf) // each evaluation.
{ 7/ all inputs/outputs are arrays of the same type //
((WORD *) pBuffer)[0] = 10; // element type is // Parameter:
REAL // index 0..GetCount(1)-1
((DWORD *) pBuffer)[1] = 1; // dimension // pBuffer pointer to buffer to read value(s)
((DWORD *) pBuffer)[2] = O; // start index O-th // It has the same format as described in
subscript // GetDefaultValue
((DWORD *) pBuffer)[3] = ARRAY_SIZE - 1; // stop index O-th // cbBuf sizeof buffer in bytes
subscript // plnstanceData see description above
//
// Returns:
// 0 if output value is invalid
LI11717777777777177777777777777777777777777/7/77/7/77/7/7/7/7/777 |7/ =0 if output value is valid
// GetDefaultValue V4
// DLL BOOL GetOutputValue(int index, void *pBuffer, int cbBuf,
// Parameter: void *plnstanceData)
// io 0 = input, 1 = output {
// index 0..GetCount(io)-1 BOOL bRet = FALSE; // default invalid
// pBuffer pointer to buffer to receive value(s): dynamicDataType *pData = (dynamicDataType *) plnstanceData;
//+ + + +
//] type | iecll3l type | size of buffer in bytes] assert(pbData !'= NULL);
//+ + + + if (pbata !'= NULL)
/7] 1 | BOOL | 1
/7] 3 | INT | 2 | it (pData->outputValuevalid[index])
/7] 4 | DINT | 4 | {
/7] 8 | UDINT | 4 | switch (index)
//] 10 | REAL | 4]
/7] 11 1 LREAL 1 8] case 0:
/7] 12 1 TIME 1 8 | memcpy(pBuffer, pData->outputValue[index],
//] 16 1 STRING 1 1024 (including terminating null) | sizeof(pData->outputValue[index]));
//]1 19 1 DWORD 1 4] break;
/7] 22 1 ARRAY | total element count * size of | case 1:
/7] 1 | element 1 memcpy(pBuffer, &pData->nlnstance, sizeof(pData-
//+ + + + | >nInstance));
// cbBuf sizeof buffer in bytes break;
// plnstanceData see description above case 2:
// memcpy(pBuffer, &pData->Dongleld, 9);//strlen(pData-
// Note: These functions are called once for initial >Dongleld));
// initialization of the dIl form instance break;
// (pInstanceData is NULL). default:

© iba AG 2009 he

¥

Page 7-6 Manual

pData->outputValueValid[index] = FALSE;
LI11177777777777777777777777777777777777777/777/777//77/77//77/77/
// ExitEvaluation

bRet = TRUE; //
// Called immediately before the dlIl form instance is removed.
} // Do any form instance specific cleanup.
//
return bRet; // E.g.: The memory set by SetlnstanceDataPointer() may contaion
// another pointer to dynamically allocated memory in
// InitEvaluation(). Here is
// the point to deallocate that memory.
LI1177/7777/7/7/77/777777 |7/
// InitEvaluation // Note: Do NOT deallocate the memory set by
// // SetlnstanceDataPointer()! This memory is managed by
// Do specific initialization of any local data. // the calling application.
// Values are already set to their defaults. //
// // Parameter:
// Parameter: // pGlobal see description above
// pGlobal see description above // cbSize see description above
// cbSize see description above // plnstanceData see description above
// plnstanceData see description above //
// DLL void ExitEvaluation(const void *pGlobal, int cbSize, void
DLL void InitEvaluation(const void *pGlobal, int cbSize, void *pInstanceData)
*plnstanceData) {

globalvarType *pGlobals
(globalvarType *) pGlobal ; dynamicDataType *pData
(dynamicDataType *) plnstanceData;

(globalVarType *) pGlobal;
(dynamicDataType *) plnstanceData;

globalVarType *pGlobals
dynamicDataType *pData

assert(pGlobals != NULL);
assert(pGlobals != NULL); assert(pData 1= NULL);
assert(pData 1= NULL); assert(pData->nlInstance >= 0);

if (pbata != NULL)
{
memcpy(pData->Dongleld,pGlobals->g_DongleSerialNum,9);

pData->Dongleld[8]=0;
// pData->DongleHasLogic = DongleHasLogic();

pData->nlInstance = nlnstance++; 7.1 .3. SampleDLL.def

pData->outputValueValid[1] = TRUE;

pData->outputValuevalid[2] = TRUE; LIBRARY sampleDIl
pData->outputValuevValid[3] = TRUE;

ifT (memcmp(pData->Dongleld,''999999,6) 1= 0) VERSION 1.2

DESCRIPTION **Sample form DLL"

pData->outputValueValid[0] = FALSE;
EXETYPE WINDOWS

3} ¥ EXPORTS

DIIMain @1
L1117771777777777777777777777777777/77/7777/7/7/7/7/77/7/7/7/7/77/ GetDIIVersion B i @2
// Evaluate GetlnstanceDynamicDataSize @3
//
// Calculate all output values and their corresponding valid GetCount @4
// bits.
// In this sample DLL each output value has a corresponding value GetDIlIDescription @5
// in outputValuevalid to indicate if the value is valid or
/7 invalid. GetName o @6
// 1f outputvaluevalid[] is FALSE, GetOutputvValue() will return GetDescription @7
// FALSE to ibalLogic, the Output will be marked as invalid and
// the data will not be updated. GetType 08
V74 GetArrayHeader @9
// Parameter:
// pGlobal GetDefaultvalue @10
// cbSize
// plnstanceData see description above SetInputvalue @11
7/ GetOutputvValue @12
// Returns: : :
// Bit0 = 1: DLL has changed default values InitEvaluation @13
/ (SET_DEFAULT function) Evaluate @14
7/ causes call to GetDefaultvalue() for all 1/0"s ExitEvaluation @15
// Bitl..31 = 0 (reserved)
//

DLL DWORD Evaluate(const void *pGlobal, int cbSize, void
*plInstanceData)

globalVarType *pGlobals
dynamicDataType *pData

(globalVvarType *) pGlobal ;
(dynamicDataType *) plnstanceData;

assert(pGlobals != NULL);
assert(pData 1= NULL);

if (pDbata !'= NULL)
{
memcpy(pData->Dongleld,pGlobals->g_DongleSerialNum,9);
pData->Dongleld[8]=0;
i (memcmp(pData->Dongleld,"00999999",8) 1= 0)
pData->outputValueValid[0] = FALSE;
else
pData->outputValueValid[0] = pData->inputValueValid[0] &&
pData->inputValuevalid[1];
}

if (pData->outputValuevalid[0])

for (i = 0; i < ARRAY_SIZE; ++i)

{
pData->outputValue[0][i] = pData->inputValue[O][i] * pDa-
ta->inputvValue[1][i];
3

}
}

return 0O;

© iba AG 2009

G

Manual Page 7-7

7.2 List of reserved names by ibalLogic

Ther are some names of functions and procedures which are reserved exclusively
by ibaLogic. When trying to use such names for naming new FBs, connectors of
FBs, OTCs, IPCs, macro blocks or tasks, an error message will appear.

Please refer to the table below in order to avoid such conflicts.

reserved names by ibalogic

add_dt_time

add_time

add_tod_time

concat_d_tod

divtime

dt to date

dt to_tod

multime

pi
pid

pidt1

pt1

pt2

ramp
sub_date date
sub_dt_dt

sub_dt_time

sub_time

sub_tod_time

sub_tod_tod

© iba AG 2009 m

Page 8-8 Manual

8 Support and Contact

For technical support or sales information, please contact your local iba represen-
tative or call the following numbers:

Telephone: +49 911 97282-14
Fax: +49 911 97282-33

Email: support@iba-ag.com

For downloads of the latest software versions as well as hardware and software
manuals please use our web-site at: http://www.iba-ag.com/

Any feedback, comments or tips on errata in this documentation or suggestions
for improvement will be appreciated. Simply send an e-mail or fax to us, thank
you for your support.

iba AG IBA-Benelux BVBA
Koenigswarterstrasse 44 Rivierstraat 64
90762 Fuerth / Bayern B-9080 Lochristi

Germany Belgium
Tel.: +49 (911) 97282-13 Belai Tel.: +32 9 226 2304
Headquarters Fax: +49 (911) 97282-33 elgium, Fax: +32 9 226 2902
Luxembourg,

Contact: Harald Opel
iba@iba-ag.com

Contact: Roeland Struye

Netherlands, roeland.struye@iba-benelux.com

France, Spain
Great Britain

e iba America, LLC & iba LAT, S.A.
sEhin 6845 Shiloh Road East, C.C San Miguel 1, Piso 1, Oficina 1.
—— SUite D-7 — Calle Neveri, Redoma de Harbor
—_— Alpharetta, GA 30005 YV 8050 Puerto Ordaz

. USA Venezuela
North America, 1| . +1 (770) 886-2318 \S/ce)ﬂfhzﬂzﬁ‘ca Contakt: Eric Di Luzio
US Territories, Fax: +1 (770) 886-9258 Tel. + 58 (286) 951 9666
Caribbean, Ber- coniact: Scott Bouchillon Fax.: + 58 (286) 951 2915
muda sb@iba-america.com Cel.: + 58 (414) 386 0427

eric.di.luzio@iba-ag.com

ibaASIA GmbH & Co. KG

Saturnstrasse 32

90522 Oberasbach

Germany

Tel.: +49 (911) 969 4346

Fax: +49 (911) 969 4351

ibaChina, Qonta}ct: Ma}rio Gansen
iba@iba-asia.com

ibaKorea,
ibalndia,
ibalndonesia
ibaMalaysia,
ibaThailand

m © iba AG 2009

Manual

Glossary

Configuration

A configuration is, e.g., a plc rack with processor and 1/O-
cards or an ibalLogic-PC. The components are able to
communicate with each other.

*.csv

Comma separated value; general term for ASCII- or text
files with columns of values or entries. The columns are
separated by a mutual separation character. Typical sepa-
ration characters are comma (,), semicolon (;) or the TAB
character. Spreadsheet programs such as MS Excel may
import or export these files.

Evaluation mode

During the programming in ibalogic it is possible to
switch over at any time without waiting in the evaluation
mode for test and diagostic purposes. The correct function
of a program can be tested quickly by this feature. In the
evaluation mode no outputs are set to the process.

Function

Subroutine, which can have any input parameter but re-
turns only one result. Functions return always the same re-
sult for the same input parametrization (no memory ef-
fect).

Function block

Function blocks can have many but clearly defined in- and
output parameters and they can use internal variables
(memory), e.g. PID-regulator.

Instruction List (IL)
Assembler-like programming language for plcs, standard-
ized by I[EC 1131-3.

HOT SWAP

Feature of ibalogic. If this feature is enabled ibalogic cre-
ates a copy of the current project. This copied program
can be evaluated in the HOTSWAP layer. A synchronized
switch-over between HOTSWAP and online layer enables
the user to perform even larger program modifications
and finally activate them.

IEC 1131

International standard, consists of five parts. Particularly
the part 3 (IEC 1131-3) is about programming languages
for plc.

In- / Output resource
In- and output channels (signals) of ibalogic are called "l/O
resources.

Online mode

In online mode the inputs and outputs of the program
from / to the process are enabled. The online mode is indi-
cated in ibalogic by a purple background color of the
programming screen.

Plc
Programable Logic Controller; device that controls, regu-
lates and monitors a process. It usually consists of a rack

© iba AG 2009

or frame with different components, such as CPU, in-
Joutput cards, software etc.

POU

Program Organization Unit, according to IEC 61131-3 it is
a program, a function block or a function.

Program

Standard term; programs are the "containers" for con-
nected functions and function blocks. A program can be
written in any of the programming languages which are
defined in [EC 1131-3. Programs are always assigned to a
task of a certain cycle time base.

Resource (project)

Standard term; a resource is a part of a configuration. A
configuration can consist of one or more resources. A re-
source is always assigned to one CPU only. One CPU can
cover several resources.In ibaLogic there is always one re-
source per PC which is called "layout" (application).

Sequence

Control procedure, which processes single separated steps
in a defined sequence. Only one step is activ at a time. SFC
(Sequential Function Chart) is used for programming.

SFC
Sequential Function Chart; type of programming language
according to IEC 61131-3 for sequence controls.

Soft-plc

A plc (Programable Logic Controller) which is working on
a PC base. It consists of a PC, the required control applica-
tion software and the I/O components.

Structured Text (ST)

Programming language according to IEC 1131-3, very
similar to the standard language PASCAL.

Task

One or more tasks can be assigned to one resource. A task
has an explicitly defined time behavior (period), e.g. 20
ms, 100 ms etc. One or more jobs with a common time
base can be part of a task.

Manual Page Il

References

[1] IEC 1131-3: a standard programming resource http://www.plcopen.org/intro_nw.htm
[2] Karl Pusch, Grundkurs IEC1131, Vogel Verlag, 1. Auflage, 1999
[3] E.Grotsch, SPS1 Speicherprogrammierbare Steuerungen, Oldenbourg Verlag,

4. Auflage, 2000
[4] OPC-Foundation: OLE for Process Controls OPC Common Definitions and Interfaces V1.0
[5] OPC-Foundation: Data Access Automation Interface Standard V 2.02

© iba AG 2009 m

Index
3
3964 ... 2-32
A
analytic functionscccccvviiveeee i, 4-30
arithmetic functionscooeveveiiiiieieeiieeees 4-2
ARRAY oo 1-5
asynchronous mode (FOB 10)....................... 2-43
AUTOSCIOll.... i 2-25
B
DASIC FBS .coviieiei e 4-21
basic funNctionsooovviiiiiiee e, 4-2
binary registercccoovvciiiiieeeen 4-23
bit-shift functionscooovveviiiiieniiieeeeee, 4-18
21010] I 1-5
branches......c.oooeeeeeeeeeee e 3-16
buffered mode.........cceoevviiviiiiiiiiiieiieeeeee, 2-40
C
Ch32ANalyzerceeviiiiiiiiiiieeee e, 4-37
Ch4O0sCilloSCOPE. ...vvviiiiaeeiiiiiiieie e 4-37
CHAO0scIlloSCOPE ...coeveeeeeeeeieeeeeeeeeeeeeeeeee 3-37
communication functions.............cceevevvevnnn.. 4-32
comparison functionsccoceeiiiieneenee. 4-20
configuration file..........coocii 6-8
configuration path............ccccovviii, 2-22
connection liNes.......cooovevveeiiiiiiiiiiiee e 3-15
CONVEISION TUIES.....ueiiieiii e 4-6
[a(0] 0177 Y (o] £ K- 2-27
convert data structureccoeveiviviineeiinnnnn. 4-14
converting functions............ccccceveeeeeiees 4-7, 4-8
correlation ... 4-35
(oo 1 U]] (=] 4-26
CSV-Technostringccccccovveevvvieenieeeeieieee, 5-13
Lol U] £ 0] T 4-35
D
data source (playback)........ccccovvveeiiiinnnnen. 2-28
datatypes......oooiciiiiiiiee e 1-5
(o] 01Y7=] £ Lo o T 4-6
default value typecccvvvvvveeeiiiieeeee, 2-24

© iba AG 2009

Manual Page V

DatFileCleanup........cccccccevvviiiniinnnnn. 4-38, 4-49
DatFileWrite.....ccoooeeeiieeeieeeeeeeeeeee, 4-38, 4-44
Daylight Saving Timeccccccevveivivcviiieeeenn, 5-17
default arraytypecccoociiiiiiiie 2-24
device Managerceevvveeiiiiiiiieeee e 2-21
DigFilt .eeeeeeeeeeee e 4-36, 4-42
DINT e 1-5
AiStOrtioN......oviiiiiiie e 4-35
distribute objects.......ccccccoiiiiiiie 2-26
DLL
global......ccooii 4-51
[oYor- | E T 4-52
sample_dll......ccoooiiiii, 7-1
drag & drop....ccooeceieieiieeeeeeee e 3-13
DWORD ...ttt 1-5
E
€CON e, 2-33, 5-14, 5-33
€CON/PPIO IN......uuuuuuiiieiiiiiiiiiiiiiirnrirerrneanenenns 5-14
€Con/PPIO OUT ..cvviiiiiieceeceeeeeeee e 5-33
edge detection..........ccceeeiiiiiiiiie, 4-25
evaluation [%].....ccoeveiiieiiiiiieieeeeee e, 3-1, 3-3
evaluation statistiC...........cccoveeeieeeiiiiee, 3-4
evaluation timeoutccvvveeeeeeeeeeiiivenne, 2-22
EXPlOde ..o 2-11
F
feedback 100PS ...cooviiiiiiiiiii 2-23
o O 2 4-23
filter (DigFilt)....cccccoviiiiiiiieiie e 4-36
[0 2 5-2
0] 2 o PN 5-19
0] 231 [T 2-35
FOB-F ..ot 5-2
FOB-F buffered mode............cooovvvvvvceineinnnennns 5-4
FOB-F Buffered Mode............cccovveveviivnnnnnenn. 5-21
FOB-F OUT Buffered Mode...........ccceeeeeennnenne 5-21
FOB-IO .o, 5-2, 5-19
FOB-10-PCI Link settings.....cccccccvvvvviveiiinnnnnnn. 2-41
FOB-M ... 2-35
FOb-M Mode.....cooeeeiiieeeee e 2-41
FOBM/IN ..oueiiieiiieeee et 5-8
FOB-M-PCI Link settingscccccceviiiiiieennnnn. 2-44
FOB-SD ...oeieeee e, 5-5
FOB-SD/FOB-TDC OUTcoovvvvviiiiiiiiiieeeeeee, 5-21
FOB-SD/TDC Link settings............ccccvvveeenennn. 2-46
FOB-SD-PCl ...couieieieeeeee 2-36
FOB-TDC ...t 2-36, 5-5
FUNCHION ..o 4-1
function block.......oooveiiieiii 1-5, 4-1
COMbBINING ... 3-22
CONNECEION Luuviiiiiiieeeeece e 3-15
Create ..o 3-30
P e 3-29
Selection......covveeeee e 3-14

Page VI
G
gENErator ..ooiiiiiiiiii e 5-16
GIODAI DLL ... 4-51
global FBSeeiiiiiiiiiiieeeee e 4-51
global resource path.......ccccccooviiiiiiniiennnis 2-22
global variablescccccceeiiiiiiiie s 4-50
globale Macros.........ccouveeeiiiiiiiiiiis 4-51
H
ROt KEYS..oiieeee i 2-7
aTo Y i Y o R 3-2
I
iba_drv.cfg ..o 6-8
1DADIAG - v 2-20
TEC 1137 i 1-4
IMPlOdeveeiieeiii e 2-10
INPUL r@SOUICES......eeviiiiiiiee et 5-1
input signal margincccoccceeeniieeniiciineen. 2-5
INSCriPtioNnoovee e 3-46
Installation ..o, 6-1
INT e 1-5
INTEITUPT ...ueiiiiiiiiiiiiiiiitiiiiivbe bbb 2-30
INValid...o e 2-31, 3-12
P e 3-17
ISA-card hardware settings.......cc.cccoocuvvieenen. 6-7
ISA-configurationcccieiiiiiiiniiiiiieee, 6-5
ISA-DIagNOSecccvvvviiiiiiiiiiiiiiiiiiiiiiieeeeeae e 2-21
L
L2B e 2-37
L2B — card configurationcccocceeeennnnenn. 5-9
L2B 5136 couuiiiiiiie e 2-38
L2B-PCl Slave settings.........cccccccvveeeeiincennnenn. 2-45
L2BxX/2 flatness.......ueeeeiiireieiiiiiiieiiiece e 5-9
layout settings..........ccevviiiiiiiiiiiiiiee i, 2-25
limiting converters..........cccooecvvieeiieeeiieennee, 4-11
10€AI DLLS oottt 4-52
10Cal FBS ..vveeeiiiiiiiiiieee e 4-52
local Macrosccuvveevieiiiiiee e 4-52
logfile ..o 2-22
logic_AcqRestartCountccceeeeiiieeeennne 4-50
logic_EvalDeltaTime.........cccccevviiiieiiiienenne 4-50
logic_EvalTime........cooveiiiiiiiiiicc e 4-50
l0gic_ ONliNe ...cooeiiee e 4-50
logic_Unlockedcoooveiiiiiiiiiiiieeiieee, 4-50
logical analyzer........ccccceiiiiiiiii i, 3-37
logical operations..........cccooviiivieiiieiiiiiine, 4-18
LREAL ...ttt 1-5
M
macro block........cooiiii 3-22
CONNECTONS ...coviiiiiii e, 2-25
Create.. e 3-22
€It .o 3-23
MOy .ovveeei 3-22

Manual

menu
AT euviiiiiiiii i 2-10
eValuateovvviiiiiiiiiii 2-14
Fil e 2-9
hardwareccccveeviee e 2-20
help. e 2-21
HOt SWap ...covviiiie e, 2-16
JAYOUL....eeviie e 2-15
TechNOStriNG....ccveeeiiiiiieieee e, 2-17
VIBW i 2-12
Min-/max functions.............cccvvvvviiviiinnininnnn, 4-19
Mode (FOB 10)cccuviviiiiiiie e 2-42
module assignment............cccccvviieeeee i, 3-8
MOUSE KEYS ...oiiiiiiiiiiiee ettt 2-8
multichannel oscilloscope.........ccccceeiinnnnne. 3-37
N
NamMing restrictioncccuuveveevieeeeeneienennenen 7-7
@)
OffTask connectorcooceiiiiiiiiiiee, 3-19
online modifications.........ccccccccvvvvil. 3-1
OPC-CONNECLONS ...t 2-25
OPC-diagnostiCS.......ccuvvvieieeeeeiiiiiieieeeae e 5-40
OPGC-DLLS ...t 5-36
operations for FB-creationcccccccccevveen. 3-25
operations in ST.......ooeviiiiiiiiiieeie e e 3-27
0sCilloSCopeuvvvieiiiee i 3-37, 4-37
OTC e 3-19
output reSOUrCESevvviiiiiiieii e 5-18
output signal margin..........ccccceeeviiiiiiinnnnenn, 2-5
P
PaduB-ICP.....cceeeeiiiiieieeee e 5-8
Padu8-M........cuuuiiiiiiiiiiiiiiiiiiiiinnierennrnnnrnnnnnnnne 5-8
Parallel...........uuvvvviiiiiiiiiiiiiiiiiiiiiiiiiieeeeaeeaens 2-33
PASSWOId......uuuuuuiiiiiiiiiiiiiiiirirererrrerrrnrernrarnnnn. 3-1
PCl configuration........ccccccoovevvvieeieee e, 2-41
PCI-boardeuvvevviiiiiiiiiiiiiiiiiieierennnnnnnnnn 2-30
PCI-Cards.......uuuuuurririiiiiiiiiiiiisirnieeeererenrrnrnnnnn. 6-9
PCMCIA-F ..o 2-40
PIDT1-controller.......cccccceeeiiiciiieeieeee e, 4-39
playback ... 2-28, 3-7
inputs (Playbackin)ccccoeeiieiiniiinnnen. 5-15
MOAE .o 2-30, 3-7
module assignment..........cccccoeeeiiiiiiiiennenn. 3-8
output (Playback OUT)cccvvveeeeeeennns 5-34

© iba AG 2009

PNt oo 3-46
printed Pagescooiiiiiiiiiieiie e 3-46
printer functions..........cccoviiiini 3-46
printer settings ..o 3-47
PrOgram @r€a........cceuveeuuuuuiiieeeeeeeeriinaaaeeaaaeeens 2-5
program settingsooccuveeeiiiiiiiniiiiieeeeen, 2-22
R
(=10 01 o PPN 4-41
REAL ..ceieiiiiee ettt 1-5
receiver formatcccoceiiii i, 2-42
Reflective Memorycooociiiiiiiiiiiiieeee 2-39
card settingsoooeviiiiiiiiiiie e, 2-48
INPUT r@SOUICES ..covvvveeeieeeeeeeeeiiiieee e e eeeeeens 5-10
OUtPUL r€SOUICES ... 5-32
FEOISTON ittt 4-22
repeat mode (playback)ccoooiiiiinnnnn. 2-28
replay mode (playback)......ccccccevvvecivieennnennn. 2-28
reServed NAMES.......ccooiueiieiiiiieeiriiee e eieeae e 7-7
FESOUICES ..cvvniiiiii it r e rra e naa e 2-12
=] (= TP PPPPPRN 2-5
descriptioncooeeeeieieeeceee e, 3-6
QT T 01T T« TR PR 3-6
selection......coooeeiieii e, 2-5
FESEIICtIONS ... 3-1
FEft e 4-35
right mousebuttoncccccoeiiiiiii. 3-13
RM e 2-39, 5-10
S
sample dll ... 7-1
samplingtime........ccccceeeeiiiicii e, 2-30
SAVE .iiiieeit e 2-9
scaling converters......ccccccovvcvvieeeiee e, 4-13
ol (== o PP 2-5
security settings......cccccvvvvveiiiiiiiiiii, 6-4
select time ranges (playback)..........cc.co........ 2-28
selection functions............cccciiiiiiiiiiinne, 4-19
shift-registercccocoovvveeiiiic e, 4-23
ShOWSTIING oo, 4-38
signal manager mode.........cccccceeeeeinnes 2-30, 3-7
signal Processingccoovveuviiieiieeesinnciieee. 4-35
SIMADYN-D TechnoString..........ccoeevcvvvveennnnn. 5-5
Slider. .o 3-21, 4-38
SOft-PLC MOdE oo 3-7
Soft-PLC mode......ccccevvvvviiiiiii 2-30
ST s 3-26
STRING. ..ot 1-5
string functionsccoociiiiii i 4-16
Structured Text......oovvvvvviiiiiiii, 3-26
CASE oo 3-31
EXIT e 3-32
FOR < 3-32
IF/ELSIF ..o 3-31
RETURN ...ttt 3-32
SWITCH .o 3-21, 4-37
system configuration
ISA-CArdSuvvvvvriiiiiiiiiirinrrereeerrerereerrererrannne 6-5
PCl-Cardscoocuvieeiiiiiieeiiece e 6-9

© iba AG 2009

Manual

Page VII
system settings
FOB IO/ FOB-Mccovviiiiieiiiiciiieeeeeeeie, 2-35
FOB-TDC/ FOB-SD-PClceovieiiiieiinaennn, 2-36
general. ..o 2-30
L2B i 2-37
L2B 5136 . 2-38
Other coveiii 2-32
paralleloeiii i, 2-33
Reflective Memory.......ccccccvvveevviiciiiinnnennn, 2-39
System UTC Time ...oeeveeeiiiiiiiiieeeee e 5-17
T
task
CONFIQUIe....oo i 3-13
order of processingccccccveeeeviiicivennnnnn. 3-4
=] (=Tt 1o] o TN 2-6
SEttiNGS .ooovviiiiiii 3-13
SIZB ittt 3-13
TCP/IP..ceeeee e 5-11
ACtiVate ..., 2-32
TCP/IP Out TeChNOccevveieeiiieeeeeeeeeen 5-25
Teplp Test.eXe. .o 2-19
TechnoStringcccvvveevieec e 5-11
TCP/IP Out settings.......cccovvvviiiiiiiiiiiiiiiiininnn, 2-50
TCPIP_SeNARECVceeei i 4-34
TechnoStringccceeevvvciiiveennnnn. 2-17, 5-11, 5-25
Terminationcooooevvieiiiiii e, 5-26
TIME . 1-5
time trigger maskccccvvveiiiiiiiie e 2-42
HIMr e 4-27
L (o Yo] I o Y- 1 (N 2-7
transmitter format..........cccooeeeiiiiiiiiiieeee, 2-42
turbo modeoeeeeiiiiiiee e, 2-30, 3-7
type CONVErSION .oooveeeiieiciccccccecceeeeeeeeee e 4-6
U
UDINT e 1-5
unavailable signals........cccccccevennnn. 2-31, 3-12
USB dongle......ccuvviiiiieeiiceeecee e 6-2
UTC-TIME ettt 5-17
V
Validatecoveieiieieee e 4-38
Values ..o, 2-13, 2-25
Visual BasiC......uvveeeiieieiiieeiieeeeeeee e 5-38
W
Watchdogeeeiiiiiiiiiie e 2-30
WiINAOWS NT ... e 6-2
WINdoWs XPovvveeeiieieiiieeeeee e 6-4
Z
p4= (o X1 1 1= 1 N 5-33
Zero MasK.......coouveiiiiiiiiiiiee e 2-33
Zero oN device 0ooevvviiiiiiiiiiiiieeee e 2-33
zeros on broken links..........cccoeeeeiiiiiiiiiinnnnnn, 2-31
zeros on broken links..........cccoeeeviiiiiiiiiiiinnn, 3-12

Page VIl Manual ibaLogic

@ © iba AG 2009

	Welcome to ibaLogic
	Introduction
	System properties of ibaLogic in brief
	The plc programming languages according to IEC 1131-3
	IEC 61131-3 software model
	IEC 61131 program organization units (POU)
	Supported datatypes

	Operation and setup
	Getting started
	ibaLogic-V3
	ibaLogic-V3-Runtime
	Start ibaLogic with the command line

	ibaLogic user interface
	Tool bar
	Hot keys
	Combinations of mouse keys and keyboard

	ibaLogic menu bar
	"File" menu
	"Edit" menu
	"View" menu
	"Evaluate" menu
	"Layout" menu
	"Hot Swap" menu
	"Technostring" menu
	"Hardware" menu
	"Help" menu

	Program settings
	Menu (File (Program Settings (General
	Menu (File (Program Settings (Edit
	Menu (File (Programm Settings (Conversions
	Menu (Files (Program Settings (Playback

	System settings
	Menu (File (System settings (General
	Menu (File (System settings (Other
	Menu (File (System settings (Parallel
	Menu (File (System settings (FOB IO / FOB-M
	Menu (File (System settings (FOB-TDC / FOB-SD-PCI
	Menu (File (System settings (L2B
	Menu (File (System settings (L2B 5136
	Menu (File (System settings (Reflective Memory
	Menu (File (System settings (PCMCIAF

	PCI configuration
	FOB-IO-PCI Link settings
	Characteristics of the asynchronous mode

	FOB-M-PCI Link settings
	L2B-PCI Slave settings
	FOB-SD / TDC Link settings
	Reflective Memory Card settings
	TCP/IP Out settings

	Working with ibaLogic
	System limits and boundary conditions
	Important terms and functions
	Which tasks should run how fast – and what does it mean?
	Relation between task cycle, processing time and evaluation%
	Order of task processing

	The I/O system of ibaLogic
	Identification and naming of I/O resources

	Modes of operation of ibaLogic
	Signal Manager
	Soft-PLC
	Turbo Mode
	Playback
	Using the playback function
	Module assignment for playback

	Fault management
	Zeros on broken links
	Unavailable signals are invalid

	ibaLogic handling
	Drag & drop
	Right mousebutton
	Adjust the size of the program area of a task

	Selection and connection of function blocks
	Connection lines and branching
	IntraPage connectors (IPC)
	Off-Task connectors and OPC-connections
	Switch and slider - smart helpers for testing

	Combining objects and creating macros
	Creation of a new function block
	Creating a function block without Structured Text (ST)
	Operations for simple FB-creation

	Creating a function block with Structured Text (ST)
	Operations and statements in Structured Text (ST)
	Data declarations in Structured Text (ST)
	Statements in Structured Text (ST)
	Function block PT1 in Structured Text (ST)

	Examples for statements in Structured Text (ST)
	IF- and ELSIF-statement
	CASE-statement
	FOR-statement
	EXIT- and RETURN-statement

	Creating your own DLL
	C-Compiler
	Source files needed for creating DLLs
	Procedure for creating new DLLs
	Frequent obstacles
	Linking the DLL in ibaLogic

	Testing and debugging of projects
	Single and multiple step mode, halt the project
	What to do, if values become sporadically invalid?
	The ordinary oscilloscope for testing
	The Multichannel Oscilloscope and Logical Analyzer
	Usage
	Operation
	Sample application for multichannel oscilloscope and rfft fu

	Save the project against unintended changes
	Password protection and other protecting measures
	The Hot-Swap layer
	Conception of data handling and memory in Hot-Swap

	Printing a project
	Setting the page size for a project
	Inscription and layout of pages
	Printer control settings
	Adding your corporate logo on the printed pages
	Adding your corporate copyright note
	Printed pages

	Functions and function blocks
	Basic functions
	Arithmetic functions
	Type conversion
	Rules for conversion
	General type converting functions
	Limiting converters
	Scaling converters
	Convert data structure

	String functions
	Bit-Shift functions and logical operations
	Selection- and MIN- / MAX-functions
	Comparison functions

	Basic FBs (basic function blocks)
	Register / Multiplexer
	Register function blocks
	Shift-register and FIFO function blocks

	Edge Detection
	Counter
	Timer / Time functions (Zeitfunktionen)
	Analytic Functions
	Communication Functions
	Signal processing
	Special and helpful basic FBs
	Complex funktion blocks
	PIDT1Control
	Ramp
	DigFilt - digital filtering of signals
	DatFileWrite-function block – generation of iba data files (
	DatFileCleanup-function block – clean up the harddisk

	Global variables
	Global FBs and macros
	Global DLLs
	Local FBs and Macros
	Local DLLs

	Process interface
	Input resources
	FOB-F, FOB-IO or FOB 4i- Input Resources
	FOB-F Buffered Mode
	Signals from Simadyn-D and TDC(FOB-SD / FOB-TDC)
	Input Resources FOB-M/IN
	L2Bx/2 Flatness
	Reflective Memory (RM)
	TCP/IP-TechnoString
	CSV-TechnoString
	eCon/PPIO IN – inputs from eCon / eCon32
	PlaybackIN – inputs for the playback operation mode
	Generator
	System UTC Time

	Output Resources
	FOB-IO or FOB 4o-Output Resources
	FOB-F OUT Buffered Mode
	FOB-SD / FOB-TDC OUT – Output Resources
	FOB-M /Out – output resources
	TCP/IP-Output Resources
	TCP/IP-Out PDA – signal outputs to a PDA-system
	TCP/IP Out Techno outputs

	QDA Out- output resources
	QDA/PLR OUT - resources
	Channels
	3X-Channels for QDA and ibaVision3X
	Variables
	Controls
	Material tracking (QDA Recorder #6 controls)
	Strip Tags

	Reflective Memory (RM)
	eCon/PPIO OUT – outputs to eCon / eCon32
	Playback OUT

	OPC - Communication
	OPC Automation Server Object Model
	Installation of the OPC Driver-DLLs
	OPC-sample application with Visual Basic

	Installation
	Installation of ibaLogic
	Installation with install wizard (for eCon only)
	Standardinstallation from CD

	USB dongle
	USB dongle and Windows XP
	USB dongle and Windows NT
	Security settings in Windows XP

	System configuration for ISA-cards
	Recommended ISA hardware settings
	The Configuration File "iba_drv.cfg"
	System Configuration with PCI-Cards

	Additional information and examples
	Sample listing for DLL creation
	dllForm.hpp
	SampleDLL.cpp
	SampleDLL.def

	List of reserved names by ibaLogic

	Support and Contact

