

ibaLogic Manual Seite 3

 © iba AG 2009

1

2

3

4

5

6

 7

A

B

C

8

Welcome to ibaLogic

Operation and setup

Functions and function blocks

Working with ibaLogic

Process interface

Installation

Additional information and examples

Support and Contact

Glossary

References

Index

Page 4 Manual ibaLogic

ibaLogic Manual

Issued by

iba AG
Koenigswarterstr. 44
90762 Fuerth, Germany

Tel.: + 49 (0)911 9 72 82-0
Sales -27
Support -14
R&D -13
FAX -33
Email: iba@iba-ag.com
Web: www.iba-ag.com

Unless explicitly stated to the contrary, it is not permitted to pass on or copy this
document, nor to make use of its contents or disclose its contents. Any violation
is treated as an act liable for damages.

© iba AG 2004 all rights reserved.

2th revised edition, ibaLogic Manual V 4.2 en / ibaLogic 3.88b

We have checked that the contents of this manual match the hardware and soft-
ware described here. However, deviations cannot be fully ruled out, so that we
cannot assume any warranty should any deviations actually exist. This manual is
regularly updated. Necessary revisions are included in future editions, or can be
downloaded from the Internet.

The latest version is always available for downloading at:
http://www.iba-ag.com.

We would welcome any suggestions for improvements which you may have.
Version Date Revision Chapter / pages Author Version

ibaLogic
V 4.3 Feb 12 2009 ibaLogic-V3-Runtime 1, 2, 4 , 5 ko 3.90c

 © iba AG 2009

mailto:iba@iba-ag.com
http://www.iba-ag.com/
http://www.iba-ag.com/

ibaLogic Manual Page 5

Contents

Foreword 11

1 Welcome to ibaLogic 1-1

1.1 Introduction ... 1-1

1.2 System properties of ibaLogic in brief 1-2

1.3 The plc programming languages according to IEC 1131-3....... 1-4
1.3.1. IEC 61131-3 software model... 1-4
1.3.2. IEC 61131 program organization units (POU).................................... 1-5
1.3.3. Supported datatypes... 1-5

2 Operation and setup 2-1

2.1 Getting started ... 2-1
2.1.1. ibaLogic-V3 ... 2-1
2.1.2. ibaLogic-V3-Runtime ... 2-2
2.1.3. Start ibaLogic with the command line... 2-4

2.2 ibaLogic user interface.. 2-5
2.2.1. Tool bar... 2-7
2.2.2. Hot keys .. 2-7
2.2.3. Combinations of mouse keys and keyboard 2-8

2.3 ibaLogic menu bar.. 2-9
2.3.1. "File" menu .. 2-9
2.3.2. "Edit" menu ... 2-10
2.3.3. "View" menu.. 2-12
2.3.4. "Evaluate" menu .. 2-14
2.3.5. "Layout" menu... 2-15
2.3.6. "Hot Swap" menu .. 2-16
2.3.7. "Technostring" menu.. 2-17
2.3.8. "Hardware" menu .. 2-20
2.3.9. "Help" menu .. 2-21

2.4 Program settings .. 2-22
2.4.1. Menu File Program Settings General...................................... 2-22
2.4.2. Menu File Program Settings Edit.. 2-24
2.4.3. Menu File Programm Settings Conversions 2-27
2.4.4. Menu Files Program Settings Playback................................... 2-28

2.5 System settings... 2-30
2.5.1. Menu File System settings General .. 2-30
2.5.2. Menu File System settings Other ... 2-32
2.5.3. Menu File System settings Parallel ... 2-33
2.5.4. Menu File System settings FOB IO / FOB-M 2-34
2.5.5. Menu File System settings FOB-TDC / FOB-SD-PCI 2-35
2.5.6. Menu File System settings L2B... 2-36
2.5.7. Menu File System settings L2B 5136...................................... 2-37
2.5.8. Menu File System settings Reflective Memory........................ 2-38
2.5.9. Menu File System settings PCMCIAF 2-39

2.6 PCI configuration.. 2-40
2.6.1. FOB-IO-PCI Link settings.. 2-40

2.6.1.1. Characteristics of the asynchronous mode 2-42
2.6.2. FOB-M-PCI Link settings .. 2-43
2.6.3. L2B-PCI Slave settings ... 2-44

 © iba AG 2009

Seite 6 Handbuch ibaLogic

2.6.4. FOB-SD / TDC Link settings.. 2-45
2.6.5. Reflective Memory Card settings... 2-47
2.6.6. TCP/IP Out settings.. 2-49

3 Working with ibaLogic 3-1

3.1 System limits and boundary conditions.................................... 3-1

3.2 Important terms and functions .. 3-2

3.3 Which tasks should run how fast – and what does it mean? ... 3-3

3.4 Relation between task cycle, processing time and evaluation% 3-3
3.4.1. Order of task processing ... 3-4

3.5 The I/O system of ibaLogic.. 3-5
3.5.1. Identification and naming of I/O resources 3-6

3.6 Modes of operation of ibaLogic ... 3-7
3.6.1. Signal Manager... 3-7
3.6.2. Soft-PLC.. 3-7
3.6.3. Turbo Mode .. 3-7
3.6.4. Playback.. 3-7

3.6.4.1. Using the playback function ...3-8
3.6.4.2. Module assignment for playback ..3-8

3.7 Fault management ... 3-11
3.7.1. Zeros on broken links.. 3-11
3.7.2. Unavailable signals are invalid .. 3-11

3.8 ibaLogic handling ... 3-12
3.8.1. Drag & drop.. 3-12
3.8.2. Right mousebutton... 3-12
3.8.3. Adjust the size of the program area of a task 3-12

3.9 Selection and connection of function blocks.......................... 3-13
3.9.1. Connection lines and branching.. 3-14
3.9.2. IntraPage connectors (IPC) .. 3-16
3.9.3. Off-Task connectors and OPC-connections 3-18
3.9.4. Switch and slider - smart helpers for testing 3-20

3.10 Combining objects and creating macros 3-21

3.11 Creation of a new function block ... 3-23
3.11.1. Creating a function block without Structured Text (ST) 3-23

3.11.1.1. Operations for simple FB-creation...3-24
3.11.2. Creating a function block with Structured Text (ST) 3-25

3.11.2.1. Operations and statements in Structured Text (ST)3-26
3.11.2.2. Data declarations in Structured Text (ST)3-26
3.11.2.3. Statements in Structured Text (ST) ..3-27
3.11.2.4. Function block PT1 in Structured Text (ST)3-28

3.11.3. Examples for statements in Structured Text (ST).............................. 3-30
3.11.3.1. IF- and ELSIF-statement...3-30
3.11.3.2. CASE-statement ..3-30
3.11.3.3. FOR-statement ..3-31
3.11.3.4. EXIT- and RETURN-statement ..3-31

3.12 Creating your own DLL ... 3-32
3.12.1. C-Compiler.. 3-32
3.12.2. Source files needed for creating DLLs.. 3-32
3.12.3. Procedure for creating new DLLs... 3-32
3.12.4. Frequent obstacles.. 3-33

 © iba AG 2009

ibaLogic Manual Page 7

3.12.5. Linking the DLL in ibaLogic.. 3-34

3.13 Testing and debugging of projects ... 3-35
3.13.1. Single and multiple step mode, halt the project.............................. 3-35
3.13.2. What to do, if values become sporadically invalid? 3-35
3.13.3. The ordinary oscilloscope for testing... 3-36
3.13.4. The Multichannel Oscilloscope and Logical Analyzer 3-36

3.13.4.1. Usage... 3-36
3.13.4.2. Operation... 3-37
3.13.4.3. Sample application for multichannel oscilloscope and rfft
function block .. 3-41

3.14 Save the project against unintended changes 3-43

3.15 Password protection and other protecting measures 3-43

3.16 The Hot-Swap layer .. 3-44
3.16.1. Conception of data handling and memory in Hot-Swap.................. 3-44

3.17 Printing a project.. 3-45
3.17.1. Setting the page size for a project... 3-45
3.17.2. Inscription and layout of pages... 3-45
3.17.3. Printer control settings.. 3-46
3.17.4. Adding your corporate logo on the printed pages 3-47
3.17.5. Adding your corporate copyright note .. 3-47
3.17.6. Printed pages .. 3-47

4 Functions and function blocks 4-1

4.1 Basic functions ... 4-2
4.1.1. Arithmetic functions ... 4-2
4.1.2. Type conversion... 4-6

4.1.2.1. Rules for conversion... 4-6
4.1.2.2. General type converting functions ... 4-8
4.1.2.3. Limiting converters... 4-11
4.1.2.4. Scaling converters .. 4-13
4.1.2.5. Convert data structure ... 4-14

4.1.3. String functions .. 4-16
4.1.4. Bit-Shift functions and logical operations.. 4-18
4.1.5. Selection- and MIN- / MAX-functions .. 4-19
4.1.6. Comparison functions ... 4-20

4.2 Basic FBs (basic function blocks)... 4-21
4.2.1. Register / Multiplexer .. 4-21

4.2.1.1. Register function blocks ... 4-22
4.2.1.2. Shift-register and FIFO function blocks....................................... 4-23

4.2.2. Edge Detection ... 4-25
4.2.3. Counter... 4-26
4.2.4. Timer / Time functions (Zeitfunktionen)... 4-27
4.2.5. Analytic Functions ... 4-30
4.2.6. Communication Functions... 4-32
4.2.7. Signal processing .. 4-35
4.2.8. Special and helpful basic FBs... 4-37
4.2.9. Complex funktion blocks... 4-39

4.2.9.1. PIDT1Control.. 4-39
4.2.9.2. Ramp ... 4-41
4.2.9.3. DigFilt - digital filtering of signals .. 4-42
4.2.9.4. DatFileWrite-function block – generation of iba data files (*.dat)4-44
4.2.9.5. DatFileCleanup-function block – clean up the harddisk.............. 4-49

4.3 Global variables .. 4-50

 © iba AG 2009

Seite 8 Handbuch ibaLogic

4.4 Global FBs and macros ... 4-51

4.5 Global DLLs... 4-51

4.6 Local FBs and Macros ... 4-52

4.7 Local DLLs... 4-52

5 Process interface 5-1

5.1 Input resources... 5-1
5.1.1. FOB-F, FOB-IO or FOB 4i- Input Resources ... 5-2
5.1.2. FOB-F Buffered Mode.. 5-4
5.1.3. Signals from Simadyn-D and TDC(FOB-SD / FOB-TDC) 5-5
5.1.4. Input Resources FOB-M/IN .. 5-7
5.1.5. L2Bx/2 Flatness ... 5-8
5.1.6. Reflective Memory (RM).. 5-9
5.1.7. TCP/IP-TechnoString .. 5-10
5.1.8. CSV-TechnoString.. 5-12
5.1.9. eCon/PPIO IN – inputs from eCon / eCon32..................................... 5-13
5.1.10. PlaybackIN – inputs for the playback operation mode 5-14
5.1.11. Generator ... 5-15
5.1.12. System UTC Time .. 5-16

5.2 Output Resources ... 5-17
5.2.1. FOB-IO or FOB 4o-Output Resources... 5-18
5.2.2. FOB-F OUT Buffered Mode.. 5-20
5.2.3. FOB-SD / FOB-TDC OUT – Output Resources 5-20
5.2.4. FOB-M /Out – output resources... 5-21
5.2.5. TCP/IP-Output Resources ... 5-23

5.2.5.1. TCP/IP-Out PDA – signal outputs to a PDA-system.......................5-23
5.2.5.2. TCP/IP Out Techno outputs ...5-24

5.2.6. QDA Out- output resources .. 5-27
5.2.7. QDA/PLR OUT - resources .. 5-28

5.2.7.1. Channels ...5-28
5.2.7.2. 3X-Channels for QDA and ibaVision3X..5-28
5.2.7.3. Variables ...5-29
5.2.7.4. Controls ..5-30
5.2.7.5. Material tracking (QDA Recorder #6 controls)5-30
5.2.7.6. Strip Tags..5-31

5.2.8. Reflective Memory (RM).. 5-31
5.2.9. eCon/PPIO OUT – outputs to eCon / eCon32 5-32
5.2.10. Playback OUT.. 5-33

5.3 OPC - Communication .. 5-34
5.3.1. OPC Automation Server Object Model .. 5-34
5.3.2. Installation of the OPC Driver-DLLs.. 5-35
5.3.3. OPC-sample application with Visual Basic 5-37

6 Installation 6-1

6.1 Installation of ibaLogic ... 6-1
6.1.1. Installation with install wizard (for eCon only) 6-1
6.1.2. Standardinstallation from CD.. 6-1

6.2 USB dongle... 6-2
6.2.1. USB dongle and Windows XP ... 6-2
6.2.2. USB dongle and Windows NT ... 6-2
6.2.3. Security settings in Windows XP ... 6-4

 © iba AG 2009

ibaLogic Manual Page 9

6.3 System configuration for ISA-cards .. 6-5
6.3.1. Recommended ISA hardware settings ... 6-7
6.3.2. The Configuration File "iba_drv.cfg"... 6-8
6.3.3. System Configuration with PCI-Cards .. 6-9

7 Additional information and examples 7-1

7.1 Sample listing for DLL creation... 7-1
7.1.1. dllForm.hpp .. 7-1
7.1.2. SampleDLL.cpp.. 7-3
7.1.3. SampleDLL.def .. 7-6

7.2 List of reserved names by ibaLogic ... 7-7

8 Support and Contact 8-8

Glossary I

References III

Index V

 © iba AG 2009

ibaLogic Manual Page 11

Foreword

This compact manual provides the information for handling the graphical pro-
gramming software ibaLogic.

The operation of the software is explained for many cases by using typical exam-
ples. In particular cases especially in conjunction with process in- and output
components please refer also to the related hardware documentation.

You can find the latest issue of this manual always on our website
http://www.iba-ag.com in the download area.

This manual contains seven chapters explaining the use of ibalogic and its fea-
tures.

Chapter 1 In the first chapter you'll find an introduction with information about
the most important features of ibaLogic and the standard IEC1131-3.

Chapter 2 This chapter describes the user interface with all menus and dialog
windows. The most important settings of the program and the sys-
tem are described here.

Chapter 3 In chapter 3 you'll find practical advise for working with ibaLogic.
Stages of operation from program design over usage of function
blocks, creation of macros, testing and debugging up to printing are
described in detail.

Chapter 4 All standard function blocks and functions which are available in iba-
Logic are listed and explained in this chapter.

Chapter 5 In this chapter you'll find the description of the in- and output re-
sources and OPC communication.

Chapter 6 System requirements and software installation as well as some special
features when using former ISA-boards are the subject of this chap-
ter.

Chapter 7 In the last chapter you'll find additional information for special topics,
such as program listings, dedicated application examples etc.

Finally, this manual also contains a glossary which serves as a quick-finding refer-
ence to special terms and abbreviations, a list of references and an index that can
help to quickly find the information you need.

 © iba AG 2009

http://www.iba-ag.com/

Page 12 Manual ibaLogic

This manual uses several symbols which essentially have the following meanings:

Important hint or warning in order to avoid hazard against material or life.

A useful tip or clue to make your work easier.

 This draws your attention to special features, such as exceptions to rules, etc.

 A reference to additional documentation or more in-depth literature.

Software or file name

reference to associated software or sample applications on the CD-ROM.

iba training courses

Hint for training courses by iba concerning related products or subjects

The following notation refers to menu functions in ibaLogic:

the left mousekey. In case

ating systems MS Windows® NT 4.0,
® ®

ows® NT, 2000 and XP are registered trademarks of the Microsoft Corpo-
tion.

File System settings

Wenn using the trm "mouseclick" we always refer to
the right mousekey should be used it's pointed out.

The software ibaLogic works only with oper
MS Windows XP or MS Windows 2000.

MS Wind
ra

 © iba AG 2009

ibaLogic Manual Page 1-1

1 Welcome to ibaLogic
1

1.1 Introduction
ibaLogic combines the convenience of a comfortable signal manager and the per-
formance of a powerful soft-plc. Because ibaLogic is often used for high speed
measuring and control applications, very short scan cycles (≥ 1 ms) and a time-
deterministic behaviour are essential system properties.

Beside an easy handling the great advantage of ibaLogic is the exclusive use of in-
ternational standards in terms of operating system, communications and pro-
gramming language which guarantees the openness, portability and reusability
of application programs created with ibaLogic.

Standard-PCs with Windows® as operating system are the hardware platform for
ibaLogic. As a consequence ibaLogic benefits from all current and future devel-
opments in the PC industry, such as internet technology, remote access and, of
course, the continuing increase of processor performance.

Using a diagrammatical programming language with function block diagrams
makes it very easy for the user to build an application with ibaLogic. Of course,
ibaLogic complies with the requirements of the IEC 61131-3 standard for soft-plc.
The reasons are not only the portability, the easy-to-learn effect or market strat-
egy. Moreover, ibaLogic offers a wide range of solutions for program design and
applications by using consequently the data formats and languages of IEC 1131-
3, e.g. "Structured Text (ST)" as meta language or "STRING" as a convertible data
format.

The flexible process interface and the open communication interface are two of
the major advantages of ibaLogic. The connection to sensors and actors is either
done by international standardized field bus systems (e.g. Profibus), by using the
ibaNet750 I/O-system with components from WAGO/Beckhoff or by using fast
PADU units (Parallel Analog Digital Converter) for control or regulation. The open
communication between ibaLogic and HMI-systems or other higher level com-
puters works with a standardized OPC interface and TCP/IP or "Named Pipes".

ibaLogic-V3-Runtime is the economy-priced version of ibaLogic-V3. ibaLogic-V3-
Runtime is used to execute only a runtime without a possibility to edit the pro-
gram with an editor.

The general applications for ibaLogic are:

Fast signal (pre-)processing and signal distribution

 Signal management and signal preprocessing for ibaQDA, ibaPLR or ibaVi-
sion

 Signal preparation and complex trigger-generation for ibaPDA, ibaQDR,
ibaPLR or ibaQDA

 Fast signal switching and management between ibaLogic and other appli-
cations (e.g. ibaQDA or Visual C++ or Visual Basic programs written by
the user himself)

 © iba AG 2009

Page 1-2 Manual ibaLogic

Soft-plc in compliance with IEC 61131-3

1 PC-based automation system for Windows® with ibaLogic as high-class
soft-plc.

 Due to its easy handling and intuitive operation and due to its versatile in-
terfaces and integrated fast online monitoring features ibaLogic meets
perfectly the requirements of revamping existing control applications. If
these existing control applications were written in Structured Text they
could be even reused by ibaLogic.

Signal processing

 Condition monitoring system for machines
 Vibration analysis for machines, with sampling rates of up to 25 kHz /

channel
 Monitoring for bearings and alarm message generation
 New ways of quality data recording and monitoring
 Storing signals in iba's *.dat file format and retrieving (playback) recorded

data
Simulation

 Simulation of rolling mill stands, e.g. for training purposes
 Simulation of entire plants, e.g. for testing control and regulation applica-

tions in other automation devices
IEC1131-3 Software-Development-Package

 Platform-independent programming language, based on IEC 61131-3 stan-
dards (ST)

1.2 System properties of ibaLogic in brief

 Shortest program cycletime is 1 ms and higher

 Time-deterministic behaviour with Windows®

 Userfriendly by Windows-like look-and-feel, easy to learn and to handle;
graphic programming with autorouting support;

 Short turn around time for operation inputs or program modifications.
These actions are executed immediately without compilation. If these in-
puts or modifications are performed in the online-layer they will directly af-
fect the process (!) ("...like wiring a former control cabinet under voltage").

 HOT SWAP switching, i.e. it's possible to modify a functionblock diagram
while the current program version is still controlling the process. When the
modification is finished a smooth switch-over will activate the new pro-
gram version. This feature is a big advantage particularly for continuous
processes, e.g. in the paper industry or processing lines.

 Programming language, data formats and the functionblock library are in
compliance with the international standard IEC1131-3.

 The following data types and formats are supported:
Boolean, Integer (16 bit, 32 bit, unsigned 32 bit), double word, float (32
bit, 64 bit), string, time and array (4-dimensional of the previous mentioned
datatypes, except string, homogeneous)

 An extensive function block (FB) library with many standard and special
functions. A further extension of the library by the user himself is possible.

 © iba AG 2009

ibaLogic Manual Page 1-3

 Two methods of creating new function blocks interactively:

1

 Simply, without deeper programming knowledge, by using mathematic
formulas

 Extension of the first method by using the "Structured Text (ST)" meta lan-
guage. Thus, it's possible to use “if-then-else”-queries or “for-next” loops.

 Program structuring by means of "macro blocks" (MB), made of one level or
interlaced; simple creation of MBs by marking and combining several func-
tion blocks.

 An open DLL-interface in order to integrate special functions or technologi-
cal know-how, e.g. by means of “C” or “C++” programs.

 Full support of a hierarchical program design by using the means creation
and integration of macros.

 Support of “multitasking” and task-to-task-communication.

 A fully integrated product, i.e. all required tools and compilers (ST, C++,
Assembler) are integrated in ibaLogic; easy installation and handling.

 Process I/O link for the following systems:
 Input (typical: 1ms) of analog- / binary inputs with fibre optical link be-

tween FOB I/O or FOB 4i PCI boards (unidirectional) and PADU8/16/32.
 Input of fast analog- / binary inputs (up to 25 kHz / channel) with FOB I/O-

PCI or FOB 4i-PCI + FOB 4o, running in "FOB-M mode" (unidirectional),
linked to Padu ICP / Padu M.

 Input / output (typical: 1ms) of analog / binary inputs and analog / binary
outputs with fibre optical link between FOB-IO (bidirectional) and
PADU8/16/32 and Padu8-O, SLM.....

 Input / output of analog / binary inputs and analog / binary outputs with fi-
bre optical link between FOB-IO (bidirectional) and ibanet750-head module
with connection to WAGO- terminals (I/O delay time is module-specific, see
data sheet of I/O-modules), image copy of WAGO-head: typ. 1 ms.

 Diverse interfaces to common fieldbus systems and backplanes, such as
(Profibus-DP, VME-Bus, MMC/S5 u.a.).

 Diverse interfaces to plc and control systems of the major brands, such as
ABB, ALSTOM, SIEMENS, SMS-Demag, KVÆRNER, PROSOFT, ALLEN-
BRADLEY etc.

 Open communication interface
 TCP/IP by “named pipes” (for in- and outputs) in connection to PCs and plc-

systems and *.csv –files (comma separated value), e.g. for use in MS Excel
or other programs

 OPC interface to standard HMI systems
 TCP/IP communication to distributed ibaPDA/ibaQDA and / or ibaLogic soft-

plc applications
 SIMATIC S7 by L2B card (Profibus DP slave module, uni- and bidirectional).
 SIMATIC S5 or MMC216 by SM64-IO card, uni- and bidirectional.
 Serial interface with 3964R protocol (e.g. Siemens process computer of R-

and M-series).
 Simatic TDC interface FOB TDC to GDM (bidirektional)
 Simadyn-D interface card FOB SD to rack connection CS12/13/14
 ALSTOM ALSPA C80 HPC (Logidyn D1, D2) by VME interface card SM128V
 System connectors to CAN, Profibus Master, DeviceNet and ControlNet,

coming soon

 © iba AG 2009

Page 1-4 Manual ibaLogic

1
1.3 The plc programming languages according to IEC 1131-3

Before the introduction of IEC 61131-3 there was a variety of different program-
ming languages for plcs which were not standardized and very often customized
only for the devices of their manufacturer. Former program-linguistic means, such
as Instruction List were not efficient enough and many solutions could have been
easier with standard languages. Moreover, the periods of professional education
of the maintenance staff were pretty long, particularly when getting familiar with
existing plc applications. The lack of local memory ranges and of symbolic ad-
dressing lead to mistakes which were hard to find.

These deficits were part of the reasons for the definition of Part 3 in the IEC 1131
standard. In IEC 1131-3 the old languages had been standardized and finally
supplemented by the new language "Structured Text" (ST). But the new standard
describes not only the commands and syntax of a programming language. Fur-
thermore, it declares the architecture and structure of a plc system from the
software's point of view.

By means of the new languages, it is possible to describe a complete plc system,
inclusive the hard and software assignment. The new lingual elements are con-
figuration, resource and task. On the programming level there are the elements
program, function block and function.

1.3.1. IEC 61131-3 software model

Statements of the norm with examples:

 An automation system consists of one or more configuration(s) which are
able to communicate with each other. A configuration is, e.g., a plc rack
with processor and I/O-cards or an ibaLogic-PC.

 A configuration consists of one or more resources. A resource is always as-
signed to one CPU only. One CPU can cover several resources. In ibaLogic
there is always one resource per PC which is called "Layout". Layouts in iba-
Logic are stored either in a *.lyt-file or in a *.txt-file (ST).

 One or more tasks can be assigned to one resource. A significant quality of
a task is its cycle time. This period can be described explicitly. Several jobs
with a mutual time base are combined in one task, e.g. all jobs to be acti-
vated in a 20 ms-period.

Fig. 1 IEC1131-3 software model

 © iba AG 2009

ibaLogic Manual Page 1-5

1.3.2. IEC 61131 program organization units (POU)

According to the IEC 1131 standard functions, function blocks and programs are
program organization units (POU). One general restriction says that all POUs have
to be non-recursiv, i.e. they should not call themselves in a program.

1

 Functions are subprograms which could have any input parameters but re-
turn only one result. Functions return always the same result for the same
inputs (no memory effect).

 Function blocks can have many but clearly defined in- and output parame-
ters and they can use internal variables, i.e. there is a memory effect. As an
example for a function block a PID-regulator can be used multiple times in
the same task or by different tasks with different sets of data.

 Programs contain the interconnection between functions and function
blocks. A program can be written in any of the program languages which
are defined in IEC 61131. The programs are explicitly assigned to a task
with a certain period.

1.3.3. Supported datatypes

The following basic datatypes are supported by ibaLogic:

Typ Range (min) Range (max) Remark

BOOL 0 (FALSE) 1 (TRUE)

INT -32_768 32_767 16-bit Integer
(signed)

DINT -2_147_483_648 2_147_483_647 32-bit Integer
(signed)

UDINT 0 4_294_967_295 32-bit Integer (no
sign)

DWORD 16#0000_0000 16#FFFF_FFFF 32-bit Word (no sign)

REAL 1.175_494_351 e-38 3.402_823_466 e+38 Floating point, sin-
gle accuracy, 32 bit

LREAL 2.225_073_858_507_201_4
e-308

1.797_693_134_862_315_8
e+308

Floating point, dou-
ble accuracy, 64 bit

TIME -
922_337_203_685_477_580.8
ms

922_337_203_685_477_580.7
ms

Time, internally de-
picted as 64-bit In-
teger (signed) with
0.1ms resolution per
increment

STRING 0 1024 chs String of characters
with number of char-
acters including ter-
minal flag (NULL).

ARRAY Structure, consisting of one of the above mentioned datatypes, except the
String-type (which is an array by itself); maximum of four dimensions.
Maximum number of elements: 1048576

Table 1 Supported datatypes

 © iba AG 2009

ibaLogic Manual Page 2-1

2 Operation and setup

2

2.1 Getting started

2.1.1. ibaLogic-V3

If ibalogic is not installed on your PC yet, please refer to 6. There you will find a
detailed description which guides you through the first steps of the installation.

ibaLogic is to be started simply by a double click on the file ibaLogicversion.exe
®

F

F

 © iba A

in the Windows explorer. Depending on a customized installation there might be
also an icon on your desktop screen or even an entry in the Windows® "Start
menu" which could be used for program start.

ig. 2 Start of ibaLogic

If ibaLogic has been started without copy protection lock (dongle) a dialog win-
dow opens with some alternativs for starting ibaLogic even without dongle.

ig. 3 Start of ibaLogic without dongle

 G 2009

Page 2-2 Manual ibaLogic

In case you just forgot to attach the dongle please plug it now on the serial or
USB interface and click on "Repeat search".

If no online mode and no playback function is requiered you may start ibaLogic
without dongle.

ibaLogic would be started with full functionality, but limited time. After 4 hours
of operation the program will be terminated automatically.

If ibaLogic should be used for operation together with an eCon no dongle is re-
quiered either.

If you are working under Windows NT and want to use an USB-dongle but have
not installed the USB drivers yet, you may do it now. After the installation of the
USB-support just start ibaLogic again. When working under Windows XP or 2000
this option is disabled.

After the start the ibaLogic standard screen appears, with the major areas:

2

 Menu bar

 Tool bar

 Resource area with resource selection tabs

 Task area with task selection tabs

Each task has an input and an output signal margin and a program area.

2.1.2. ibaLogic-V3-Runtime

ibaLogic-V3-Runtime is the economy-priced version of ibalogic-V3. ibaLogic-V3-
Runtime is used to execute only a runtime without a possibility to edit the pro-
gram with an editor. The runtime must be created with ibaLogic-V3 and copied
on the process computer.

 The file „autostart_runtime.lyt“ must be created with an ibaLogic-V3-System. ibaLogic-V3-
Runtime and ibaLogic-V3 must to be of the same version.

ibaLogic-V3-Runtime has to be installed on the process computer, so the runtime
can operate.

The installation procedure is the same as the installation of ibaLogic-V3.

If you create a runtime file, you have always to use “autostart_runtime.lyt” as
filename. Copy the file “autostart_runtime.lyt” into the directory “…\schematics\”
on the process computer.

The runtime file “autostart_runtime.lyt” is started automatically at the start of
ibaLogic-V3-Runtime. If ibaLogic-V3-Runtime doesn’t find the file you will get an
error message.

Fig. 4 Error message ibaLogic-V3-Runtime

 © iba AG 2009

ibaLogic Manual Page 2-3

ibaLogic-V3-Runtime is to be started simply by a double click at the icon on the
desktop or a double click on the file ibaLogicversionxy.exe in the Windows® ex-
plorer.

2

The process and the state of the runtime are displayed at the state window.

Fig. 5 State window ibaLogic-V3-Runtime

If you click the right mouse button at the runtime label at the task bar a context
menu will be displayed like the following.

Fig. 6

this context menu.

If you call up the system settings, ibaLogic asks you to stop the running process
ntime.

Context menu ibaLogic-V3-Runtime

You may stop the runtime or open the system settings in

of the ru

If you don’t abort the evaluation only a view to the system settings is possible. If
you abort any evaluation, you may configure the system settings.

The evaluation starts again after closing system settings.

 You find a amplification of the system settings in chapter 2.5

 © iba AG 2009

Page 2-4 Manual ibaLogic

2

2.1.3. Start ibaLogic with the command line

ibaLogic can also be started with the command line. Therewith it is possible to
start ibaLogic with a batch file or with a Visual Studio application.

You can refer parameter by using the command line to start ibaLogic differently.

Syntax of the command line

Fig. 7 Command line interpreter

C:\ibaLogicXXX>ibaLogicXXX –start

 ibaLogic-V3-Runtime: starts the runtime file automatically.

 ibaLogic-V3: starts ibaLogic-V3 with an empty layer.

C:\ibaLogicXXX>ibaLogicXXX –start configuration\schematics\Datei.lyt

 ibaLogic-V3: starts ibaLogic-V3 with a file.lyt and locked the layer.

C:\ibaLogicXXX>ibaLogicXXX –start -dt

You can preset a default value –dt for the base time. This is needfully if ibaLogic
starts for the first time.

XXX=Version number

 © iba AG 2009

ibaLogic Manual Page 2-5

2.2 ibaLogic user interface
After start-up, ibaLogic shows a screen like the following:

Resource area

Menu bar

Output
signal

2

Tool bar

margin

Input
signal

margin

Program area

Task

 © iba

e rce selectionR sou
b

Fig. 8 ibaLogic standard screen

Like in many other Windows® applications, a menu bar (drop-down menus) and a
tool bar with buttons for frequently used commands are located in the upper
part of the screen. The commands of the menu and the tool bar are explained in
the next chapter of this manual.

For the application ibaLogic uses two major areas. On the left side of the screen
there is the resource area. This area is devided into three views, which can be se-
lected by clicking on the tabs on top of the resource area: the recources, the layer
components and the report. Once a view is selected, the corresponding options
appear for further selection at the bottom of the resources area.

The resources are devided into three groups: input resources, functions (incl.
function blocks) and output resources. The desired resource group can be se-
lected by clicking on the resource selection tabs.

To use a resource (e.g. the analog input no. 1 of module no.1 on the FOB/FOB-F
interface card) just click on the desired resource, hold the mouse button, drag the
mouse over the desired part in the task area, i.e. input signal margin, program
area or output signal margin, and leave the mouse button (drag and drop).

If you'd prefer to use the full screen for the task area, just hide the display of the
resource area by choosing the menu View none.

Task selection tabs

 AG 2009

Page 2-6 Manual ibaLogic

The "Layer Components" section shows all resources and objects which are used
in the current layout. For different requirements there are three different views,
using a tree structure:

Under the tab Hirarchy you'll find for each task the resources distinguished by
their types: FB and Macros, inputs, outputs, off-task inputs, off-task outputs and
intra-page (connectors). In order to find a particular resource, just click on the re-
source name in the tree and the display of the function block diagram will jump
to the corresponding spot and mark the resource.

2

Under the tab Objects, similiar to the hierarchy-view, all objects which are used in
the layout are listed but in an order sorted alphabetically by object types. Going
deeper in the tree structure leads to the tasks and final instances of these objects.
A click on an object instance will switch the function block diagram to the corre-
sponding spot.

Under the tab Instances, the view is alike the previous one but the objects are
sorted alphabetically by instance names.

The "Report"-view provides two further options: Evaluation order and Feedback-
loops.

The evaluation order of the functions is shown in a tree-structure as well. Below
each task all related functions are listed corresponding to the evaluation order.
The first function is evaluated at first, the last function at last. The knowledge
about the evaluation order is important when troubleshooting complex and en-
capsulated programs. By clicking on the function name in the tree, the display
switches automatically to the corresponding spot in the function block diagram
and highlights the function block.

The "Feedback-loop"-view shows all feedback-loops, i.e. endless loops and unin-
tended recursions which may cause problems if available. All functions which are
part of such a loop will be displayed in the tree, sorted by tasks. To find the re-
lated functions, use the same method as described before.

The application programs created by the user are assigned to tasks. Each task has
its own cycle time (period), e.g. 50 ms. The period of each task is shown in the
task selection tabs. You can switch from one task to another by clicking on the
task selection tabs. All tasks put together are a layout or a project which is stored
both in a *.lyt-file and in a "Structured Text" (*.txt-) file.

As soon as ibaLogic is set to evaluation mode or to online mode the "Evaluation
[%] display" appears in the lower left corner of the screen. This display shows the
percentage of time spent for processing the tasks in relation to their defined pe-
riod.

 © iba AG 2009

ibaLogic Manual Page 2-7

2.2.1. Tool bar

The ibaLogic tool bar consists of short cuts for commands as follows:

2

2

Layer com a s
- create new layer (pla
- open existing layer
- save current layer
- close layer

P

m nd
n)

rint command
- print current layer
 (all tasks)

E
-
-
-
-

Advanced controls
- lock current layer
- activate/deactivate
 online evaluation
- switch-over between
 act. layer and
 hotswap layer

Evaluation controls
- execute multiple step
- execute single step

 View controls
- show Ch4Oscilloscope
 (or logical analyzer)
- back to parent
 (close macro view)

ditor commands
 cut selection to clipboard
 copy selection to clipboard
 paste from clipboard
 multiple object selection

Fig. 9 Tool bar

.2.2. Hot keys

Key combination Function

<CTRL>+<A> Open an existing layout (*.txt)

<CTRL>+<Backspace> One level back (inside a macro, up)

<CTRL>+<C> Copy marked object to the clipboard.

<CTRL>+<M> Activate multiple object selection (followed by outlining the objects
with the mouse).

<CTRL>+<N> Create a new layout

<CTRL>+<O> Open an existing layout (*.lyt)

<CTRL>+<P> Print current layout

<CTRL>+<Q> Stop evaluation

<CTRL>+<S> Save current layout

<CTRL>+<V> Paste contents from clipboard

<CTRL>+<X> Cut marked object and put it on the clipboard

<Alt>+<ENTER> Edit marked object

<Alt>+<I> Single step for evaluation

<Alt>+<L> Lock / release online layer

<Alt>+<M> Multiple step for evaluation

<Alt>+<O> Online / Offline-switching

<Alt>+<P> Pause evaluation

- pause evaluation
- start /stop evaluation

 © iba AG 2009

Page 2-8 Manual ibaLogic

2

Key combination Function

<Alt>+<R> Reset and restart evaluation

<Alt>+<S> Start / Stop evaluation

 Delete marked object

Table 2 Hot keys

2.2.3. Combinations of mouse keys and keyboard

LM = left mouse key RM= right mouse key

Keyboard Mouse Function

 LM (click) Mark an object in program or resource area

<CTRL>+ LM (click) Mark another object in program or resource area (successive);
when marking objects which are linked to each other, the
connection lines are marked too.

<Shift>+ LM (click) Mark another object in program or resource area (successive);
when marking objects which are linked to each other, the
connection lines are marked too.

<Alt>+ LM (click) Cut connection line and replace it by IntraPage-connector(s);
mouse cursor must point on the line concerned.

 LM (doubleclick) On function block: open function block

On symbolic name: change name

 LM (hold) Shift view on program area on the screen, when mouse
pointer is placed in empty space (mouse pointer change its
shape to cross pointer)

 LM (hold) Selection of one or more objects in program area by outlining
and

shifting a marked object or object group

 LM (hold) Changing route of connection lines, when mouse pointer
shows cross-shape at line kinks

 LM (hold) Extend the program area by another page on the right side or
bottom side; the mouse pointer has to be placed on the far
right or lowest margin of the program area, then it changes
shape to a double pointer, then draw it over the border to the
right resp. down.

 RM Open a context menu, if available, e.g. in program area or on
tabs in the task selection bar.

Table 3 Combinations of keyboard and mouse operation

 © iba AG 2009

ibaLogic Manual Page 2-9

2.3 ibaLogic menu bar

2

2.3.1. "File" menu

Fig. 10

 F

 sting layout, (*.lyt)-file

 II: Save the current layout as Structured Text (ST) in an ASCII-file

ew name
ructured Text-files are independent from ibaLogic software

 current layout.

 P inter commands
assword.

ifying, saving and closing the project are
layers can be protected

: Opens a window with a variety of printing options in order to specify
ther to print the entire layout (all tasks) or just a choice of objects.

 Page Setup: Setup of page layout, e.g. page size, margins etc.

 Settings
 Program settings: Open dialog window for program settings,

see section 2.4.
 System settings: Open dialog window for system settings,

see section 2.5.
 PCI configuration: Open dialog window for PCI configuration,

see section 2.6.
 ISA-configuration: Open dialog window for ISA configuration,

(not available with Windows XP)
 Restart driver: Restart the communication drivers
 Exit: Close and exit ibaLogic

"File" menu

ile commands
New: Create a new layout "Project"
Open: Open an exi

 Open ASCII: Open ASCII file (*.txt) (Structured Text)
Open DLL: Open an (imported) DLL-function

 Save: Save the current layout as *.lyt-file
Save ASC
(*.txt)

 Save As: Save the current layout in *.lyt- and *.txt-file under n
Remark: ASCII-St
versions and should be used and stored for backup.
Close: Close the

assword and pr
 Change Password: Enter or change the online p

After activation of password, mod
locked by correct password input. Thus, hot-swap
from switch-over.

 Print
whe

 © iba AG 2009

Page 2-10 Manual ibaLogic

2

2.3.2. "Edit" menu

Fig. 11 "Edit" menu

 T

 task)

 iguration: definition of task name, cycle time
m area.

 P

 ge(s): Insert a new page or column of
.

 F

 er band“ for
cks, lines and comments

 F

ntioned

ask commands:
 New: Create a new Task
 Insert: Insert a new Task (ahead of the current
 Clear: Delete contents of a task
 Remove: Delete the selected task completely

Configure Task...: Task conf
and size of progra

age commands:
 Page properties: Open dialog window for entering information to be

printed on the pages.
 Insert or Remove Row / Horizontal Page(s): Insert a new page or row of

pages on top of the current page.
Insert or Remove Column / Vertical Pa
pages left from the current page

unction block commands (1):
 Cut: Cut out function block or multiple selction
 Copy: Copy selected elements
 Paste: Insert selected elements (cut or copied)

Multiple Block Select Mode: Alter the cursor function to „rubb
selection of a group of function blo

unction block commands (2):
 New: A further submenu opens for creating a new function block, macro

block, off-task connector or comment.
r submenu opens for modification of the above me Modify: A furthe

blocks and elements. (Element to be modified must be selected)
Block Function:
Implode: : Build a macro by combination of the selected function blocks,
lines and comments
Explode: : Break down a macro block into its components and insert them

 © iba AG 2009

ibaLogic Manual Page 2-11

2

 Replace FB: Open a dialog window for replacing one function block by an-
other. Choise of reference to one instance or all instances of the FB.

 Delete: Delete selected elements

Yo ay get the me
program area (cont

u m nu "Edit" also by clicking the right mouse key when pointing into the
extmenu).

 Navigation

Fig. 12 "Ed

 logic analyzer
 Show Source: Show the connection to the source (task) of a selected off-task

connector (input).
 Show Target: Show the connection(s) to one or more targets of a selected

off-task connector (output).

it" menu, navigation commands

To Back: Put marked object in the backgroun d (graphically)
 Back to parent

Switch back to an upper program level, i.e. leave the macro level.
 Show Multi-Channel-Oscilloscope: Open a window for display of the selected

multi-channel-oscilloscope or

 © iba AG 2009

Page 2-12 Manual ibaLogic

2

2.3.3. "View" menu

Fig. 13 "View" m

 T mands

 R

: Open the directory of input resources

esources: Open the directory of output resources
ponents

rranged according to their hierarchy, i.e. by tasks. Mouseclick

r according to their type. Opening the

rding to their instance

tion order of the tasks and their objects.

(top-down).
Feedbacks: Show "endless loops" if present. Mouseclick on shown objects
will lead to the corresponding spot in the function block diagram.

 None: Close the resource area on the screen completely, so that the screen
is only used for program area.

 Load resource descriptions: Load modified descriptions of I/O-resources,
e.g. I/O resources which had been renamed by an external editor and saved
as CSV-files. (For creation of such CSV-files, just select the desired resource
with the right mouse button and confirm export.)

 Equalize resource descriptions: Signal names from the function block dia-
gram can be used for resource description. Vice versa the resource descrip-
tion can be used in the diagram.

enu

ask com
Task: Selection of available tasks (e.g. 0..1)

esource selection commands
Resources
Input Resources
Function Blocks: Open the catalogue of functions and function blocks
Output R

 Layer Com
Hierarchy: Open a tree structure which shows the objects, used in the pro-
ject (layout), a
on an object in the tree will lead to the object in the function block dia-
gram.
Objects: Open a tree structure which shows all objects and instances in the
project (layout), arranged in an orde
tree branches will show where these instances are used. A further click on
the taskname will lead to the object in the corresponding task and function
block diagram.
Instances: View similar to previous but sorted acco
names.
Report:
Evaluation Order: Show the evalua

 © iba AG 2009

ibaLogic Manual Page 2-13

 Layer control

2

 Online/Offline Layer: Switch-over between online- and offline layer in "Hot-
Swap" mode.

 Values: Display of current signal values of function blocks, task in- and out-
puts in evaluation or online mode. (see example below: "Values on")

 Evaluation Statistic: Monitoring of processing time for each task, see below

Shows an overview about the different tasks with information about task
name, processing time per cycle (in ms) with minimum, maximum and actual
value, the total of these values and the overall runtime.

 Pipes: Monitoring of pipe connections

The "Pipe Viewer" shows an overview of the current status of configured pipe
connections ("pipes").

 See also 5.1.8
 Driver status messages: Open a dialog window with status messages about

ibaLogic, e.g. restart of drivers, initialization of registry etc.
 TCPIP Out: Open a dialog window with an overview of the current status of

configured TCP/IP connections.

 © iba AG 2009

Page 2-14 Manual ibaLogic

2

2.3.4. "Evaluate" menu

Fig. 14

 C

 f one program cycle (all tasks)

 ps (2..64) for "Multiple
step"

 Restart: Restart all tasks

 Control of online / offline mode
 Go Online/Offline: Switch between online and offline mode. The activated

online mode is indicated by purple background color on the screen.
 Lock/Unlock Online Layer: Locking of the current online layer with input of

a password (if a password is defined) will prevent switching to offline mode
and modification of this layer. The online layer must be locked in order to
create a hot-swap layer.

 Abort Evaluation: After confirming the command, online mode resp.
evaluation mode will be interrupted immediately.

"Evaluate" menu

ontrol of evaluation mode
Start/Stop: Start/Stop the offline evaluation of all tasks (evaluation mode)
Pause: Pause or continue the evaluation mode
Single Step: Evaluation o

 Multiple Step: Evaluation of multiple program cycles
Set Multiple Step Count: Setting the number of ste

 © iba AG 2009

ibaLogic Manual Page 2-15

2.3.5. "Layout" menu

Fig. 15 "Layout" menu

2

 Layout commands

The layout commands refer to the representation of objects in the program area
of ibaLogic, such as function blocks, off-task-connectors or comments. The ob-
jects concerned should be marked first.

 Align Objects: According to the submenu the marked objects will be
aligned along a common line. The terms Left, Right, Top and Bottom refer
to the object borders, the terms Center Horizontal and Center Vertical refer
to the (virtual) center lines of the objects.

 Adjust Width, Adjust Height: The corresponding submenus offer different
kinds of adjustments
Equalize to max.: More than one object should be marked. This command
adjusts the width resp. height of all marked objects to the widest resp.
highest object in the group.
Equalize to Presetting: One or more objects may be marked. The command
adjusts the width resp. height of the marked objects according to the pre-
settings given in the menu File Program Settings Edit.
The limit in terms of downscaling is the full representation or legibility of
the entire contents of an object, e.g. all input and output connectors of a
function block.
Adjust to Object: This command adjusts the width of an marked object ac-
cording to the full legibility of its contents. In case of a height adjustment
the preset distance between connectors of a function block, given in the
menu File Program Settings Edit, is taken into account.

 Distribute Objects: At least three objects should be marked. According to
the preset, given in the menu File Program Settings Edit the marked
objects will be distributed in vertical or horizontal direction with an even
distance referring to their left or top edge or with an even gap between
two objects.

 © iba AG 2009

Page 2-16 Manual ibaLogic

2

2.3.6. "Hot Swap" menu

Fig. 16 "Ho w

 H
 t-swap layer it’s possible to create a copy of a cur-

odify it and to switch over
 create a hot-swap layer the following

ap Create). This command will

e copied hot swap layer is now ready for modification, but

ew function blocks (with

e layer,
e.g. operator commands via OPC, don’t get lost.

 Close: Close and leave the hot swap layer. Changes will get lost unless the
layer have been switched online or the changes have been saved.

t S ap" menu

ot Swap control
Create: By means of a ho
rent layer which is running in online mode, to m
during operation („hot“). In order to
steps have to be made:
1.) Switch-over to online mode „Go Online“
2.) Lock Online Layer (key button)
3.) Create hot-swap layer (menu Hot Sw
create a copy of the contents of the current online layer without leaving the
online mode. Th
without affecting the online execution.
Apply to Online Layer: The modified hot-swap layer will be set online dur-
ing operation.
Remark: When created, the hot swap layer acquires the "memory", i.e. the
values and signal states, of the online layer. When applied to online layer,
the hot swap layer acquires the memory of the online layer again for the
program elements which are already existing. For n
memory) the values and signal states are taken from the hot swap layer.
This manner ensures that changes of values and signals in the onlin

 © iba AG 2009

ibaLogic Manual Page 2-17

2.3.7. "Technostring" menu

Fig. 17 "Technostring" menu

2

 TechnoString

TCP/IP: Open the window "TCP/IP Technostring" as shown below which offers the
possibility to assign technostring variables to input variables.

Fig. 18 T

I
Its c

CP/IP Technostring, dialog window

n this window one can parse an incoming TCP/IP technostring of any structure.
ontents can be assigned with reference to the character index either to string

(TCP/IP FLOAT 1...96).
s:

1
cellaneous)

 sends the technostring.

 ing string must

variables (TCP/IP STRING 1...16) or to float variables
In order to assign a part of a technostring to a variable please follow these step

As a precondition the TCP/IP operation must be enabled for ibaLogic
(menu File System Settings Mis

2 In the field "TCP/IP Port" enter the correct port number. This port num-
ber must be the same like in the systemg which
(see box below)

3 Using another (remote) system send a technostring to the ibaLogic
computer by means of the test program TCPIP Test.exe. The technos-
tring should appear in the dialog window above (Fig. 18).

The decoding of the technostring is strictly index orientated, i.e. the incom
always have the same format.(Peril when suppressing leading zeros!)

4 Check the box "Apply selected area to variable"

5 Then mark the desired area in the technostring field by using the mouse
(hold left button), in this example "2.25". The selected characters are re-
peated behind the term "Selection:"

 © iba AG 2009

Page 2-18 Manual ibaLogic

6 Then select the desired variable in the variable field, e.g. TCP/IP Float 1,
and doubleclick on variable name or click OK.

7 Repeat steps 4 to 6 for other variables if required.

2
 In order to check the correct assignment of technostring and variables,
just check the box "Show selected area for variable" and select one of
the recently assigned variables. The corresponding part of the technos-
tring will be highlighted.

9 When you've finished, click on OK to close the dialog window.

When exiting the dialog window the ASCII-file iba_tcp.cfg is created in the folder
configuration in order to save the assignments.

8

ibaLogic uses the default value 1500 as TCP/IP port number for technostring communica-
tion (reception), unless another port number is saved in a file iba_tcp.cfg.

If a different port number has to be used for technostring communication because this
port is used for other kinds of data exchange, then enter a new port number in the dialog
window above (Fig. 18) and click OK in order to create the file iba_tcp.cfg.

If this file is available at startup of ibaLogic, the included port number will be used.

 © iba AG 2009

ibaLogic Manual Page 2-19

2

Remark: In order to verify the proper work of the technostring function in the network, a
test program tcpip.exe is in the scope of supply of iba.

Simply enter the network address (name and IP-address) of the lokal PC and select a port
number.

Enter the IP-address of the target-PC (running with ibaLogic) and type in a text message.

Then enter the same port number in the mask as shown above on the target PC.

Set the lokal PC on "this Node is Active", click on "Connect" and then on "Send". The mes-
sage should appear in the field as shown above on the ibaLogic-PC.

 © iba AG 2009

Page 2-20 Manual ibaLogic

2

2.3.8. "Hardware" menu

Fig. 19 "Hardware" menu

 Hardware
 Check Driver: Open dialog window "Check Driver" (see below).

If installed properly, "Interrupts [1/s]:" should show approx. 1000. (may
vary). Exception: FOB 4i PCI in asynchronous mode.

 e: The system detects automatically the (iba) hardware

components which are installed in the computer and shows the number,
sorted by types.

Installed Hardwar

The example above shows that a FOB 4i PCI card is installed (one card and
four processors).

 IbaDiag: Start the diagnostic program ibadiag.exe, which is part of the
scope of supply of iba.

 © iba AG 2009

ibaLogic Manual Page 2-21

Example for the display of ibaDiag.
ibaDiag can also be started independently from ibaLogic on a PC.
Beside the detailed view on the cards ibaDiag also provides a lot of infor-
mation about the PCI-bus and the connected components.

2

 For more detailed information about the program ibaDiag please refer to corresponding
manual sw_man_ibaDiag_en_a4.pdf (or ..._LTR.pdf for letter format).

 Device manager: This menu command works only with Winows XP. It calls
the Windows device manager for display of drivers and hardware settings.
If iba I/O cards are installed in the PC you'll find a branch which is called iba
Devices in the tree structure of the device manager window. Open this
branch and you'll find the installed iba cards. A doubleclick on the card icon
opens the information dialog.

 ISA-diagnostics + submenu: Open the dialog window for FOB-F, FOB-I/O
(see example below) or Profibus via the submenu if the corresponding ISA-
hardware component is installed.

Example of an ISA-display.
New systems of iba will be equipped with PCI-cards only, because the ISA-bus
technology is in a dead end and not supported anymore in the PC industry.
In case of use of ISA cards we'd like to refer to Version 2 of the ibaLogic
manual.

2.3.9. "Help" menu

Fig. 20 "Help" menu

 Contents: Open Online-help function (requires help file)
 About...: Display of current ibaLogic software version

 © iba AG 2009

Page 2-22 Manual ibaLogic

2.4 Program settings

2

2.4.1. Menu File Program Settings General

Fig. 21

 Directories
 Globale Resource Path: Pathname for global resources, i.e. libraries, mac-

ros, function blocks (FBs) and DLLs created by the user.
 Configuration Path: Pathname for Configuration with DLLs, FBs, macros,

libraries and functionblock diagrams (projects *.lyt / Structured Text *.txt).
 Logfile Path: Pathname for the logfile, which is generated by ibaLogic.

 Activate Evaluation Timeouts:

 The evaluation or online mode will be interrupted as soon as the adjusted
evaluation timeout(of the task (e.g. 50 ms) or ibaLogic (e.g. 5 s) has passed
(watchdogs). This function interrupts unintended continuous program loops, cre-
ated by the user, or reactivates ibaLogic in case of an major error.

Program settings, general

The evaluation may also be aborted if the values entered for evaluation timeouts are too
low.

 Automatic loading on program start:

Definition of startup behaviour of ibaLogic; this is to activate the automatic start-
up or to shortcut the continuation of engineering.

 © iba AG 2009

ibaLogic Manual Page 2-23

 Function blocks in resource tree:

2

Select how the functions should be displayed in the resource tree: with name or
with description or both.

 Sorting in hierarchy:

Regel für die alphabetische Sortierung der Objekte in der Ansicht "Layer Kompo-
nenten" / "Hierarchie" (Ressourcenbereich); ohne oder mit Unterscheidung der
Groß-und Kleinschreibung.

 Warnings:
 Warning on feedback loops: This option enables the "endless loop"-

detection of ibaLogic which informs the user already during the program-
ming about feedback loops.

 Warning when switching Online -> Offline: This warning is to avoid an un-
intended switch-over to offline mode when the process is running.

 No dongle at startup:

If this box is not checked a message will appear during startup of ibaLogic in case
that no dongle has been detected. The dialog window offers some alternativs for
starting ibaLogic even without dongle, e.g. demo mode or eCon mode.

 © iba AG 2009

Page 2-24 Manual ibaLogic

2

2.4.2. Menu File Program Settings Edit

Fig. 22 Program

 P
 atype, e.g. LREAL in FBs

 Button "Set": setup dialog for default arraytype

 settings, edit

reset
Default Value Type in Dialog: Predefined dat

 Default Array Tape in Dialog: Predefined arraytype, e.g. 2-dimensional
LREAL

With changing the dimension, using the up/down buttons, one- to four-
dimensional, the corresponding index fields below can be activated.
Start index and stop index, resp. their difference, decribe the number of ar-
ray elements for each dimension.
The display field "Default" shows the number of array elements and the de-
fault values. The example above shows an one-dimesional array with 16
elements. The value of each element is 0.0.

 Default user – short sign: The user may enter his initials here. They are used
for example, in the printouts of the layout.

 © iba AG 2009

ibaLogic Manual Page 2-25

 View Values:

2

By using menu View Values it's possible to view the actual values of signals
in FBs and of in- and outputs, if selected by the check boxes below.

 Value Pad Width [grid points]: Adjustment of number of digits for value
display at the FBs in evaluation and online mode, given in grid points. You
may get a better idea of the size of a grind point when you switch on the
grid display in the program area (menu Layout Draw Grid).

 Real number accuracy (digits): Number of decimal places for Real and LReal
values;

 Check boxes for input and output types: Selection of types to be displayed;

 OTC/IPC-Size:

Selection of the size of graphical representation for new off-task and intra-page
connectors. For example, in mode "Automatic" the connector size will always be
adjusted to the name of the connector.

 Autoscroll:
 None: Autoscroll is switched off, i.e. the navigation in the program area oc-

curs by pushing the left mouse button and moving the cursor.
 On action (left mouse button down): Navigation either by pushing the left

mouse button (s.a.) or automatically when shifting FBs or drawing connec-
tion lines.

 On all mouse moves: Autoscroll is switched on, i.e. navigation in the pro-
gram area occurs every time the cursor is close to the window margin.

 OPC-Connectors:
 OPC-writing sets default values: If this option is selected, the default value

of an OPC-connector may be overwritten by an OPC-client. Using this fea-
ture each new value, e.g. manually entered via an HMI system, is taken for
the new default value by the OPC-connector. Thus, the OPC-connector takes
the latest actual value as default in case of a program restart. If this option
is not selected always the same default values as engineered will be used.
The use of this option is only relevant for OPC-connectors with an activ
OPC ibaLogic flag.

 Use new OPC Server version: The usage of the new OPC Server is strongly
recommended.

 Name Generation of Macro Connectors:

Each connector of a function block has a name. When combining several function
blocks to one macro block (implode) the new input and output connectors of the
new macro block are created at the cuts of the connection lines between the ob-
jects inside and outside the macro block. Depending of the choice of this option
the input and output connectors of the macro block will be named automatically
or according to the connctor names of the inner, resp. outer function blocks.

 Layout Settings

The layout settings are used for the functions "Adjust Width" and "Adjust Height"
in the menu Layout. The values are given in grid points as unit.

 Function blocks: Presets for the size of function blocks
 Comments: Preset s for the size of comment fields
 OTC/IPC: Preset for width of off-task and intra-page connectors

 See also chapter 2.3.5

 © iba AG 2009

Page 2-26 Manual ibaLogic

 Distribute objects:
 Even distances from left / top edge: Marked objects (at least three) will be

positioned in even distances with reference to their top or left edge when
the function "Distribute objects" in the menü Layout is used. Overlapping
of objects is may occur.

2 Even gaps: Marked objects (at least three) will be positioned with even dis-
tances between them when the function "Distribute objects" in the menü

Layout is used.
Other settings:

 Distance of in/out connectors: A minimal distance between two function
block input or output connectors can be set. The setting will be applied
when using the command "Adjust to object" in the menu Layout Adjust
Height.

 Distance of grid lines: The distance of grid lines given in grid points as unit
may be entered here. In order to see the grid just choose menu Layout

Show grid.
 See also chapter 2.3.5

 © iba AG 2009

ibaLogic Manual Page 2-27

2.4.3. Menu File Programm Settings Conversions

Fig. 23 Program settings, conversions

The selection of these options will define the actions ibaLogic performs automati-
cally in an attempt of connecting variables of different datatypes.

 Choice:
 Connect if possible but loss of accuracy
 Add datatype-converting function block (converter) to the connection
 Remove existing 'reverse'-converter
 Replace existing converter

Default setting is "ask", i.e. in case of a datatype conflict when making a connec-
tion a dialog window will pop up urging the user to confirm or reject the action.

2

 © iba AG 2009

Page 2-28 Manual ibaLogic

2

2.4.4. Menu Files Program Settings Playback

Fig. 24 Program settings, playback

 Data source:
 Dat file: Path and name of the data file (+.dat) which is supposed to be

used as signal source. Please use the button to browse if needed. If a
valid file has been found, the signifcant information is displayed in the ap-
propiate fields (starttime, sample time and number of samples).

 Select time ranges:

This option allows to limit the range of time in the data file which should be re-
played in playback mode. For manual entries of start- and/or stoptime please
check the corresponding boxes.

 Repeat mode:

Choice of how often the data should be replayed.

 Replay mode:

In order to reach a realistic replay it is necessary that the task-cycletime of iba-
Logic is equal or smaller than the sample rate of the recorded data. When in play-
back mode, ibaLogic acquires a new sample from the data file in each task if the
cycletime equals the sampletime of the recorded data. If the cycletime of ibaLogic
is shorter than the sampletime of the data, the selection of the replay mode has
the following results:

 wait until time elapsed: after reading one sample ibaLogic waits until the
sampletime has elapsed before acquiring a new sample from the data file.
(example: ibaLogic cycletime = 5 ms, sampletime in data file = 20 ms
ibaLogic acquires new samples every four cycles, for three cycles the same
value is used.)

 © iba AG 2009

ibaLogic Manual Page 2-29

 do not wait: ibaLogic acquires a new sample in every cycle. As a result the

playback looks like a time-lapse shot.

2

If the ibaLogic cycletime is longer than the sample time of the recorded data sig-
nals may "get lost" because ibaLogic takes the actual value in each cycle with refer-
ence to the correct time from the data file. The choice of "waiting" or not is irrele-
vant.

 Button "Module assignment"

Open the dialog window for assigning the input signals.

 See also chapter 3.6.4 for further information.

 © iba AG 2009

Page 2-30 Manual ibaLogic

2.5 System settings

2

2.5.1. Menu File System settings General

Fig. 25 System settings, general

 Interrupt setup:

Selection of interrupt for ISA-boards or of the PCI-board, which is supposed to
generate the interrupt.

 Operating mode:

Selection of the operating modes of ibaLogic

 Signal Manager mode: The Signal Manager mode ensures that ibaLogic
won't miss any incoming sample even if single tasks have been obstructed,
i.e. "Evaluation [%]:" has been > 100 %.
see chapter 3.6.1.

 Soft PLC mode: The Soft-PLC Mode which is suited for control and regula-
tion tasks ensures that only the freshest signal values are processed.
see chapter 3.6.2.

 Turbo Modus: Only to be used on PCs with double processor; if enabled one
processor will exclusively be used for ibaLogic evaluation.
see chapter 3.6.3.

 Playback: A data file of iba's *.dat-format which had been recorded before
by ibaPDA, ibaScope or even ibaLogic, serves as a signal source;
see chapter 3.6.4.

 General settings
 Samplingtime: Setting of the basic cycletime for ibaLogic layouts. It should

be shorter than the shortest task-cycletime used.
 Watchdogtime: Setting of the watchtime for the watchdog function. If the

watchdog function is enabled (checkmark in the box) ibaLogic sends peri-
odically watchdog telegrams to the related iba PC-cards. These telegrams
should be sent by ibaLogic to the cards always within the watchdog time,
like a trigger. The supervision of this process is done by the PC-cards, which
"know" the time setting. If the watchdog telegram, i.e. the trigger, is not
sent within the watchdog time, the cards lock the outputs on the fiber-
optical side and reset them to zero (supported only by FOB IO, FOB 4i/4o
[FOB-F]).

 © iba AG 2009

ibaLogic Manual Page 2-31

 Pipe Subcycle: A factor (integer) may be entered in this field. This factor re-
fers only to the transmission rate of QDA-pipes (see also chapter 5.2.6). The
pipe subcycle controls the transmission cycle of the QDA-pipes by using a
multiple of the ibaLogic samplingtime (above). The use of this factor is only
reasonable if the QDA-pipes must not be processed within the sampling-
time. Thus the processor load may be reduced.

2

 Options for input signals
 unavailable signals are invalid: Input resources of iba PC-cards (FOB IO, FOB

4i, L2B x/8 etc.) will be marked as invalid with a red frameline if the related
card is not installed in the PC resp. unavailable.

 zeros on broken link: In case of a broken (optical) link to the input cards
this option will cause the firmware of the cards to send zeros instead of the
last value for the related input signals.

 See also chapter 3.7.1

 Altered settings will only be applied after clicking on the button "Save configuration".

 © iba AG 2009

Page 2-32 Manual ibaLogic

2

2.5.2. Menu File System settings Other

System settings, other

This dialog is used for selection of other types of links for input and output sig-

Fig. 26

nals.

technostring, for working with dlls which use TCP/IP communication and for us-
TCPIP_SendRecv. By clicking on the button "Configura-

to the target system. For a commu-
nication over 3964 there are dedicated function blocks available in ibaLogic.

 Playback Settings

ng playback operation. This feature allows to extend the range of appli-
he playback mode. When "with" has been selected, data from a data

le may be processed together with hardware signals. In order to avoid an over-
lapping of playback signals and hardware signals, special playback input re-
sources are provided. See also chapter 3.6.4

 Altered settings will only be applied after clicking on the button "Save configuration".

 TCP/IP:

Activate / inactivate the TCP/IP link as a source of data. TCP/IP must be activated
(checkmark) for inputs/outputs via ABB VIP or Modbus (TCP/IP), for usage of

age of the function block "
tion" the dialog for TCP/IP settings opens. The dialog "TCPIP settings" is used to
make the required settings for connections over TCP/IP, see also chapter 2.6.6

 3964

Activate / inactivate a serial link, e.g. of type 3964 R (DUST). The setting of the in-
terface parameters should be done according

With
puts duri
cations for t

or without HW I/O, i.e. with or without using the hardware inputs and out-

fi

 © iba AG 2009

ibaLogic Manual Page 2-33

2.5.3. Menu File System settings Parallel

Fig. 27 System settings, Parallel

2

 Parallel

 Activate: Activate / inactivate the parallel inetrface of the PC (printer port,

lpt). This interface can be used for input and output of signals by connecting
the eCon- and eCon32-devices from iba to it. Parallelschnittstelle des PCs
(Druckerschnittstelle, LPT). This fuction is also available without a dongle.

 Port: From a pick-list choose the interface which is connected to the eCon-

device. The BIOS of the PC must be set to bidirectional or EPP mode for this
port!

 Devices: From the pick-list choose whether one or two eCon-devices should
be used.
0 ...if only one eCon is connected or

...if two eCons are connected but only the first one to be used

1 ...if two eCons are connected but only the second one to be used.

0&1 ...if two eCons are connected an both to be used.

 Zero on Device 0 / Device 1

Check the radio buttons according to type of eCon-device(s) used at first and/or
second position. Predefined zero masks are activated depending on the selection.
The zero masks are used in order to reset all outputs of the eCon-devices when
the layout has been switched to offline mode. Masking the outputs is done by
means of a 16-digit hexadecimal number. Depending on device type the interpre-
tation of the Bit-assignment in the masks differs. With the third selection (free) it
is possible to setup an individual mask. Even other values than zero can be set to
the outputs. But the latter option is rather unusual because it's generally expected
that the outputs are set to zero when the layout is switched to offline mode.

 See also chapter 5.2.9

 Altered settings will only be applied after clicking on the button "Save configuration".

 A more detailed description of the system configuration for the use of eCon-devices is
available in the special ecOn-documentation:

hw_man_econ_en_A4.pdf

 © iba AG 2009

Page 2-34 Manual ibaLogic

2

2.5.4. Menu File System settings FOB IO / FOB-M

Fig. 28

 Interrupt mode of FOB-PCI boards
 Board ID: Display of installed iba PCI cards, auto-detected

mode; only one iba PCI-card must set to "Master mode"!

 Used by ibaLogic: yes / no, please check the box if the related card should
be used exclusively by ibaLogic (and not by ibaPDA or other programs).

ouseclick on the "Configuration"-buttons opens the dialog windows which can
ached via menu File PCI Configuration, see also chapters 2.6.1

System settings, FOB IO / FOB-M

 Interrupt mode: to be selected; Master mode internal / external or slave

M
also be re
and2.6.2.

Altered settings will only be applied after clicking on the button "Save configuration".

Remark:

The checkboxes "As FOB-M" in former versions (< 3.88) have been removed. The
settings for a fast data acquisition (sample rate 25 kHz) with Padu8 M, Padu8 ICP
or Padu16 M and the card runnning in FOB-M mode should be done in the dialog
Configuration FOB/IO (FOB-F PCI settings). Each processor of a FOB 4i PCI-card
can be set to FOB-M mode individually. Thus a mixed operation of FOB-F and
FOB-M mode is possible.

 © iba AG 2009

ibaLogic Manual Page 2-35

2.5.5. Menu File System settings FOB-TDC / FOB-SD-PCI

Fig. 29 System settings, FOB-TDC / FOB-SD-PCI

2

 Interrupt mode of FOB TDC/FOB SD PCI boards:
 Board ID: Display of installed iba PCI cards of this type, auto-detected
 Interrupt mode: to be selected; Master mode internal / external or slave

mode; only one iba PCI-card must set to "Master mode"!
 Used by ibaLogic: yes / no, please check the box if the related card should

be used exclusively by ibaLogic (and not by ibaPDA or other programs).

 Automatic Reconnection

If the target system (Simadyn D / Simatic TDC) has been shut-off during operation
or is not available due to other reasons the corresponding i/o are blocked because
the related drivers are stopped. The i/o are shown as invalid in the layout if the
option "unavailable signals are invalid" has been set in the dialog File System
settings, General (see 2.5.1). Other i/o which are not connected to the missing
system, e.g. from FOB IO cards, are not affected and will be evaluated.

Selecting this option will urge ibaLogic to establish the communication to the
target system and restart the drivers after the target system has returned (which
is detected by ibaLogic automatically). This procedure takes approximately 5 to
20 seconds. For this time the evaluation of the layout is completely halted, i.e. no
i/o are available. For that reason the selection of this option should be made care-
fully in order to avoid unwanted effects on the process.

Mouseclick on the "Configuration"-button opens the dialog window which can
also be reached via menu File PCI Configuration, see also chapters 2.6.4.

 Altered settings will only be applied after clicking on the button "Save configuration".

 © iba AG 2009

Page 2-36 Manual ibaLogic

2

2.5.6. Menu File System settings L2B

Fig. 30

 Interrupt mode of L2B-PCI boards:

 Interrupt mode: to be selected; Master mode internal / external or slave
mode; only one iba PCI-card must set to "Master mode"!

 Used by ibaLogic: yes / no, please check the box if the related card should
be used exclusively by ibaLogic (and not by ibaPDA or other programs).

ouseclick on the "Configuration"-button opens the dialog window which can
File PCI Configuration, see also chapters 2.6.3

 Altered settings will only be applied after clicking on the button "Save configuration".

System settings, L2B

 Board ID: Display of installed iba PCI cards of this type, auto-detected

M
also be reached via menu

 © iba AG 2009

ibaLogic Manual Page 2-37

2.5.7. Menu File System settings L2B 5136

Fig. 31 System settings, L2B 5136

2

 Settings for L2B 5136 boards:
 Board ID: Display of installed iba PCI cards of this type, auto-detected
 Configuration file: Enter path and file name of the configuration file or

browse and select an existing file.
 Used by ibaLogic: yes / no, please check the box if the related card should

be used exclusively by ibaLogic (and not by ibaPDA or other programs).

 Altered settings will only be applied after clicking on the button "Save configuration".

 © iba AG 2009

Page 2-38 Manual ibaLogic

2

2.5.8. Menu File System settings Reflective Memory

Fig. 32 System

 C

p, Word Swap, Byte and Word Swap

settings, Reflective Memory

onfiguration of the Reflective Memory boards
Board ID: Display of installed iba PCI cards of this type, auto-detected

 Byte Swap: Activate / inactivate the swap mode; depends on the con-
nected system. To be used, e.g. if the target system requires Big Endian
mode. Choices: No Swap, Byte Swa
and Swap on Size.
Remark: The new RM-board VMI5565 does not support the swap mode

 Used by ibaLogic: yes / no, please check the box if the related card should
be used exclusively by ibaLogic (and not by ibaPDA or other programs).

 Access to digital values: Select whether the access to digital values should
be performed bitwise or bytewise.

 writing limits: Preset of the lower and upper writing limits; entry is only al-
lowed when "Activate writing limits" is checked.

ouseclick on the "Configuration RM"-button opens the dialog window which
reached via menu File PCI Configuration, see also chapters 2.6.5

 gs will only be applied after clicking on the button "Save configuration".

any more. The boards VMI5576, VMI5579 and VMI5586 still support the
swap mode.

 Activate Writing Limits: Check the box if the writing limits should apply.

M
can also be

Altered settin

 © iba AG 2009

ibaLogic Manual Page 2-39

2.5.9. Menu File System settings PCMCIAF

Fig. 33 System settings, PCMCIAF on Windows NT (left) and XP (right)

2

 PCMCIAF Setup

 By means of the PCMCIA-support ibaLogic can be supplied with input signals
even when running on a notebook computer. The card PCMCIAF from iba (order
no. 1.020) should be used for this purpose. If the PCMCIAF card should be used
please check the box Used by ibaLogic. The incoming signals (max. 64) will be as-
signed to the first two modules of the FOB-F input resources for analog and digi-
tal values.

The basic memory address is automatically set. It may be adjusted during installa-
tion of the card.

The checkbox Activate Buffered Mode should be checked, if sampling rates of in-
coming signals are higher than the task cycle time of the layout in ibaLogic. In
this case the input resources FOB-F Buffered Mode should be used in the layout
(see 5.1.2).

With Windows XP the card management is provided by the device manager in a
more convenient way than with NT.

 Altered settings will only be applied after clicking on the button "Save configuration".

 © iba AG 2009

Page 2-40 Manual ibaLogic

2

2.6 PCI configuration
 The menu File PCI configuration provides access to the same configuration
dialogs for selected cards like the "Configuration.."-buttons in the dialogs of the
system settings (compare chapters 2.5.2 to 2.5.8).

Fig. 34 Menu PCI Configuration

2.6.1. FOB-IO-PCI Link settings

Fig. 35 FOB-M-PCI Link settings

his dialog shows the configuration of each fiber optical link (0...3) of up to four

uired due to high sampling rates the Fob-M mode can be activated on
-link basis in the selection of receiver and transmitter format.

 FOB-4i-X cards and FOB-4o-X cards work only in F-Mode and M-Mode. The X-Mode (32
Mbit Telegram) couldn’t be used in ibaLogic-V3.

T
FO
(left) the co
m
a per

B-F-cards (e.g. FOB IO or FOB-4i-PCI). After selection by mouseclick in the tree
nfiguration can be changed for installed and selected cards. If Fob-M

ode is req

 FOB-2i-X cards and FOB-2io-X cards are displayed as FOB-4i cards, but only two links are
available.

Depending on the
the card type this
image may show a
FOB IO, too.

 © iba AG 2009

ibaLogic Manual Page 2-41

Receiver format

2

Data format of incoming signals (via optical link); recommended setting: Auto-
matic (default);

Integer: for data coming from SM64, SM128V, ibaNet750 and Padus
Real: for data coming from SM64, SM128V
S5 Real: for data coming from SM64 in S5 Real-format; the SM64-card must op-
erate in the same mode.
Fob-M Mode: for data coming from Padu8 M, Padu8 ICP or Padu16 M with fast
sample rates up to 25 kHz. When choosing FOB-M mode, the same format for re-
ceiver and transmitter is enforced. Each processor of a FOB 4i PCI-card (=link) can
be set to FOB-M mode individually. Thus a mixed operation of FOB-F and FOB-M
mode is possible.

 Transmitter format

...as above but for sending data

 Mode

 Synchron 1 ms: The data are received synchronously to the internal basic
samplingtime (1 ms) from the connected peripheral components. This is the
usual mode for reception of incoming data from FOB-F, FOB IO und FOB 4i
PCI cards.

 Asynchron 1...10 ms: The data are received with a different sample rate than
the basic samplingtime.

 See also Characteristics of the asynchronous mode, S. 2-42

 Time Trigger Mask

Release for using programmable sample rates with the related fiber optical port.
This is a precondition for operating in asynchronous mode and thus must be
checked.

Nearby the checkboxes for the time trigger mask, you'll find the corresponding
module numbers as a remark. Each fiber optical link corresponds to two modules,
consisting of 32 analog and 32 digital signals each, i.e. a total of 64 analog and
32 digital signals per link.

 General
 Activate Buffered Mode: If checked, the received data are buffered and

then provided to the ibaLogic layout as amn Array-resource (max. buffer
depth = 256). This feature is only available for the first eight FOB-F-
modules (compare chapters 5.1.2 and 5.2.2).

 Activate programmable Cycle Time: If checked, it is allowed to set the sam-
pletime for a fiber optical port of therelated card in the layout.

 variable Interrupt-Delta-Time: If checked, the time-lapse between two inter-
rupts may vary.

 © iba AG 2009

Page 2-42 Manual ibaLogic

 Altered settings will only be applied after clicking on the button "Save configuration" or re-
spectively "Apply" + "Save configuration".

2
2.6.1.1. Characteristics of the asynchronous mode

The intention of using the asynchronous mode is to adjust the sampletime of the
Padus to the measuring scenario, e.g. for a FFT with as less samples as possible.

The following preconditions are required:

1 The ralated fiber optical port is set to asynchronous mode.

2 Option "Activate programmable Cycle Time" is checked.

3 Option "Variable Interrupt-Delta Time" ist active (checkmark).
4 nning in asynchronous mode must

6 tput of the card con-

between

iven to the task in ibaLogic is adjusted and cor-
sponds to the real lapsed time.

The FOB-F-card, whose first Link is ru
generate the interrupt for ibaLogic.

5 The interrupt setting for the FOB-F-card is "Master/External".

The fiber optical link is a closed loop (input/ou
nected to output/input of the signal source).

7 ibaLogic runs in signal manager mode (File System settings).

If these preconditions have been carried out, the following statement applies:

The physical unit]ms] for samplingtime and task-evaluation interval will be re-
placed by the number of interrupts. As a consequence the time-lapse
two interrupts and thus between two evaluation intervals is variable.

The value EvalDeltaTime which is g
re

 © iba AG 2009

ibaLogic Manual Page 2-43

2.6.2. FOB-M-PCI Link settings

2

Fig. 36 F

This

OB-M-PCI Link settings

dialog can be used for setting the default values of the card for operating in
OB-M mode.

hese presets apply generally to all links which are set to FOB-M mode.

sually, the parameters are adjusted individually for each processor (link) later in
e layout. The settings made in the layout overwrite the default settings.

 Altered settings will only be applied after clicking on the button "Save configuration" or re-
spectively "Apply" + "Save configuration".

F

T

U
th

 © iba AG 2009

Page 2-44 Manual ibaLogic

2

2.6.3. L2B-PCI Slave settings

Fig. 37 L2B-PCI Slave settings

This dialog shows the configuration of up to four L2B-PCI cards, each with two
processors with up to four Profibus-slaves. After selection by mouseclick in the
tree (left) the configuration can be changed for installed and selected cards /
processors.

Not all modes are available with all firmware versions. Also, for older ibaLogic
versions some functions are not available.

 The default setting of the Profibus-slave numbers should be adjusted with
reference to the Profibus configuration (engineering).

 The mode for data processing respectively for data type may be set indi-
vidually for each slave. The modes "flatness..." are dedicated to data which
are supplied by Siemens flatness measurement systems. (compare chapter
5.1.5). Moreover, each slave can be deactivated individually, if it's not
needed.

 The selection of the byte swap option (checkbox) depends on the con-
nected target system.

 Altered settings will only be applied after clicking on the button "Save configuration" or re-
spectively "Apply" + "Save configuration".

 © iba AG 2009

ibaLogic Manual Page 2-45

2.6.4. FOB-SD / TDC Link settings

2

Fig. 38

ialog shows the configuration of a FOB-SD or FOB TDC card. The configura-
tion settings of the card may be changed.

adyn Lite module x in the resource area of ibaLogic (analog

m
MxPDADAT (x = 0 .. 9,A .. F) must be provided in Simadyn D, resp. in Simatic
T

O for data transfer
b y checkmarks in the boxes (0...7). One channel x corresponds to

Please note, that for each selected output channel a reception telegram
...7) must be provided in Simadyn D, resp. in Simatic TDC.

FOB-SD / TDC link settings

This d

 Active Inputs

One or more out of 16 input channels supposed to be used for data transfer can
be activated by checkmarks in the boxes (0...15). One channel x corresponds to
one FOB SD/TDC – Sim
+ digital, x = 0..15).

Please note, that for each selected input channel a transmission telegra

DC.

 Active Outputs

ne or more out of eight input channels supposed to be used
can e activated b
one FOB SD/TDC – Simadyn Lite module x in the resource area of ibaLogic (analog
+ digital, x = 0..7).

PDAMxDAT (x = 0

 -

_ibaPDA-

Because the communication principle of ibaLogic in this case is very similar to the commu
nication between Simadyn D and ibaPDA, you'll find further information in the design
guidelines for ibaPDA, sw_man_ibaPDA-SD_Project... resp. sw_man
TDC_Project..., which are available for download on our website.

 BGT Name

tem name. In terms of SD or TDC it correponds to the name

SD/TDC-card
and the target interface (CS14 board / GDM). This setting has to be changed if

This is the local PC-sys
of the SD /TDC subrack. Changing the default setting "PDA001" is not necessary.

 Link Name

This entry is the unique name of the connection between the FOB

 the communication partner is connected to othe ibaLogic or ibaPDA systems. If
the name is not unique the error message =0x6AA0 will be displayed.

 © iba AG 2009

Page 2-46 Manual ibaLogic

2
 ibaDiag. If

name is not correct the error message =0x6AA6 will be displayed

 Partner Name

This entry is the name of the connected interface board (CS14- or GDM-
processor). It must be entered here! You can find the name in the engineering
documentation of SD resp. TDC or by using the BGT diagnostics in

 You'll find further information concerning this topic in our manual about ibaDiag
sw_man_ibaDiag_en_A4.pdf, chapter 2.3.11 (or .._LTR.pdf for letter-format).

 Software Version

This entry shows the version number of the Simadyn D resp. TDC basic software
package. It e! You can find the name in the engineering

cu or by using the BGT diagnostics in ibaDiag. If
must be entered her

do mentation of SD resp. TDC
name is not correct the error message =0x6AB3 will be displayed.

 g
.._LTR.pdf for letter-format).

You'll find further information concerning this topic in our manual about ibaDia
sw_man_ibaDia g_en_A4.pdf, chapter 2.3.11 (or

 Timeouts

These entries show the waiting time for the acknowledgements of commands to
the FOB-SD/TDC card. Usually, the default setting "15" must not be changed.

 Button: Read from card

By pressing this button the data which are required for establishing a logical con-
nection, i.e. BGT-Name, Link Name, Partner Name and Software Version, will be
loaded from the Simadyn D resp. TDC system and entered in the corresponding

 required for establishing a logical

with every driver restart and en-
red in the corresponding fields, provided the physical connection is ok.

option may be used for automatically reestablishing a connection when a

fields, provided the physical connection is ok.

 Automatic Reconnection

If this box is checked off the data which are
connection, i.e. BGT-Name, Link Name, Partner Name and Software Version, will
be loaded from the Simadyn D resp. TDC system
te

This
link got lost.

The automatic reconnection should be handeled with care!

s approximately 5 seconds to reestablish a connection there might be an
interference with a proper execution of the ibaLogic layout, because during this time
the evaluation of the ibaLogic layout is halted.

Make sure, that the process or machinery which is to be controlled by ibaLogic is in save
condition when activating this option.

Since it take

 Altered settings will only be applied after clicking on the button "Save configuration" or re-
spectively "Apply" + "Save configuration".

 © iba AG 2009

ibaLogic Manual Page 2-47

2.6.5. Reflective Memory Card settings

2

Reflective MFig. 39 emory card settings

indow.

dow are presets for
example and subject to change if necessary.

 the layout.

ls from 0x0100 in 4-byte-steps with module distance of 0x0100,
eg 0x0180 in 2-byte-steps with module distance of 0x0200 and

The definition of addresses and symbolic names for input and output variables
which are exchanged via Reflective Memory with other systems should be done in
this dialog window. The corresponding input and output resources are available
in ibaLogic (32 modules with 32 analog values each, REAL or Integer, and 32
modules with 32 digital signals each). The related modules are shown in the left
part of the dialog w

The settings depend considerably on the connected system. The addresses and
symbolic names shown as default settings in the dialog win

 Signal Name

This column shows the signal names which are used internally by ibaLogic and
which cannot be changed. These names are also shown in the tooltip when the
mouse points on the connection point of the input or output in

 Offset

The offset or memory address of each signal in the reflective memory should be
entered in this column. The default settings show typical entries for example:

Real signa
int er signals from
digital signals from 0x0080 in one doubleword (= 32 bit) with module distance
0x0002.

 © iba AG 2009

Page 2-48 Manual ibaLogic

2

n a memory block, a similar addressing is very likely.
But Reflective Memory (RM) allows also the linking of several systems in a ring

c as well. In such a
 to the

configuration.

structure.

 Bit

These fields

signal in a d . The bit addressing may

 Activated

nals of a module if they ed by

he description is a simple customized text entry which will be used as signal-
ame in the layout, resp. the function block diagram. The description will appear

as signalname in the input / output margins of the layout and in the input / out-
put resource trees as well.

 Buttons „Activate / Deactivate complete module“

These buttons activate resp. deactivate all signals of a selected module.

 Altered settings will only be applied after clicking on the button "Save configuration" or re-
spectively "Apply" + "Save configuration".

In case of a point-to-point connection between ibaLogic and another system, i.e.
if the data can be mapped i

topology for data exchange which is not related to ibaLogi
case there is a free choice of addresses, i.e. the addressing may be adjusted
RM-

T
necessary t
here is no rigid assignment between RM-address and ibaLogic variable. It is not

o arrange the data in the iba module

are activated only if a module for digital signals is selected. Digital
signals should be packed in double words (DWORD, 32 bit) for ibaLogic. A single

ouble word is addressed by the bit number
be adjusted to the configuration-related requirements as well.

These checkboxes may be used in order to inactivate single analog or digital sig-
are not needed in ibaLogic or if the must not be us

ibaLogic.

Description

T
n

In case you have to define many signals it may be a painstaking task to enter all signals in
this dialog window. There is a way to ease your work:

The RM-settings are stored in an ASCII-file dynconf.cfg in the path …\configuration in the
program directory of ibaLogic.

This is a csv-file which may be opened with MS Excel (e.g. rename the file before to .csv).
The settings can be processed more efficiently by using the means of MS Excel.

Finally, save the file again under its orinal name.

 See also 5.1.6

 © iba AG 2009

ibaLogic Manual Page 2-49

2

2.6.6. TCP/IP Out settings

TCP/IP Out settings

This dialog serves for setting up the usage of output signals via a TCP/IP connec-
tion.

Fig. 40

signals each may be sent towards an
ibaPDA-system. Furthermore, there are four string variables availble for transmit-

g T uts. In order to make use of these output resources the
TC P
0…15) ed and activated individually are provided for 16
mo l
used m signed to different
tar t

Th a
output

 M

mer eingetragen werden, die im ibaP-
DA-System in den Systemeinstellungen eingetragen ist.

 PDA module number: The number of the module in ibaPDA where the

t-
tings of the currently selected module to the modules beneath in the list.

In compliance with the TCP/IP OUT output resources (refer to section 5.2.5) up to
16 modules with 32 analog and 32 digital

tin echnostring outp P/I channels have to be configured and activated. 16 channels (connector
 which can be configur

du es of output signals towards an ibaPDA-system. Thus, connections of un-
odules may be deactivated or connections may be as

ge ibaPDA-systems using different IP-addresses.

e d ta to be transmitted to an ibaPDA-system may be assigned on base of an
 module to any module in ibaPDA.

odul number
 Aktivated: The related and selected connection will be activated only if this

box is ticked off.
 IP-Address: IP address of the receiver; this may be also the local IP address

if ibaLogic and ibaPDA are running on the same PC.
 Port: Hier muss die gleiche Portnum

data are supposed to be assigned to should be entered here.
 Infochannel: no function; in preparation for transmission of signal names
 Infochanne Port: no function
 Button „Apply to following modules“: Using this button will copy the se

 Altered settings will only be applied after clicking on the button "Save configuration" or re-
spectively "Apply" + "Save configuration".

For using ibaLogic outputs in ibaPDA via TCP/IP the following conditions apply:
a) the option "TCPIP ibaLogic to PDA" must be released in the dongle,
b) the port number must be entered in the system settings in ibaPDA,
c) the moduletyp "IbaLogic" must be selected in the module configuration in ibaPDA.

 © iba AG 2009

ibaLogic Manual Page 3-1

3

3 Working with ibaLogic

ibaLogic provides a variety of functions and there are many ways to find a solu-
tion for a problem. Before starting the engineering process it is important that
there is a good comprehension of the structure and the philosophy of ibaLogic,
which is described in the following.

3.1 System limits and boundary conditions
It was our explicit intention not restrain the capabilities of ibaLogic, concerning
number of flags, I/Os etc., by build-in limits like it is done for many other control
systems on the market due to technical or marketing reasons. On one hand this
freedom is an advantage for the customer, on the other hand it might be mis-
taken for a "never-ending pot".

On principle, every system has its limits in terms of processing capacity, i.e. only a
limited number of operations in a time interval can be processed. In case of an
open system like ibaLogic these limits are determined by parameters such as CPU
power, memory size or other hardware-dependent factors of the environment for
ibaLogic. When creating a control application the knowledge of the interaction
between the different factors is important in order to avoid an overload of the
system by using its powers in all directions to their full extend.

Basically, a few restrictions apply:

The display "Evaluation [%]" should not exceed 100 %, (i.e. 1.0)!

The bigger the program the more likely are delays in compiling when mak-
ing online modifications (without HotSwap)!

In the latter case it depends on the kind of modification. If a modification affects
only one task it may work without noticeable delay (tens of ms). But if more tasks
are concerned, e.g. when modifying an OPC, it may occur that the entire project
(layout) must be compiled, linked an located. If a layout contains around 350
pages, this operation may take one or two seconds (on a double Pentium 3 with
1 GHz, plenty of RAM and "Eval %" almost 100%). And this could cause a real bad
behaviour of the controlled machinery!

Due to extended compilation time and depending on system load and kind of modification
the online process may be affected and halted for some seconds when online modifications
are performed. The system outputs won't be refreshed in this time!

In this case there may be hazard for life or machinery!

We recommend to use the Hot-Swap method when changing the layout during operation.

Always secure the layout against unauthorized or unintended modification by using the
password protection and lock function of ibaLogic.

Depending on the layout size the creation of a Hot-Swap layer might take some
tens of seconds (in the above mentioned example around 20 - 30 s for each
switch-over). But the safety benefit is worth it.

 © iba AG 2009

Page 3-2 Manual ibaLogic

3

3.2 Important terms and functions
The functionality of the application is described by functions, function blocks,
macros, connection lines and comments in ibaLogic. The container of all the tasks
is called "project".

It starts with the creation of a new project. The project contains an application-
dependent number of tasks which run with on a particular time base each (cycle
time as a multiple of the basic ibaLogic samplingtime, respectively the FOB-board
samplingtime). The contents of a project is to be stored as a file with .lyt exten-
sion. A project is always additionally stored as a "Structured Text"-ASCII formatted
file according to IEC1131-3.

One of the most innovativ features of ibaLogic is the capability to switch over to
offline evaluation mode immediately without waiting when working on the
graphical programming for test and diagnostics purposes. Thus, the function of a
program or the behaviour of function blocks may be tested quick and easy.

In order to switch on the evaluation mode click the button in the tool bar.

When testing complex interlockings the evaluation of a single step (cycle) or of a
specified number of steps is possible (single step / multiple step). In evaluation
mode the outputs are not active but inputs are read.

The activation of a project (layout) and the output of variables to a connected
process are done in online mode. In order to switch over in the online mode click
the button "Activate / deactivate Online Evaluation " in the tool bar. The back-
ground color of the screen switches from grey to purple when working in online
mode.

When switching over from evaluation mode to online mode all the outputs are
activated according to the engineered application. This may cause unintended
reactions of a connected machinery.

Make sure to avoid danger to life due to sudden moves of a machinery or
other related effects!

Furthermore, we recommend to perform only little, easy-to-handle
modifications in closed-loop controls because the cyclic processing may be
affected as well.

In order to prevent unintended reactions of the process it is strongly recom-
mended to use a Hot-Swap layer for working. With a Hot-Swap layer it's possible
to make a copy of a task running in online mode, make the changes in the copy
and switch back to normal operation afterwards, by applying the changes.

To create a Hot-Swap layer please follow these steps:

1 Switch to online mode by clicking "Activate Online Evaluation"

2 Lock the current online layer by clicking "Lock Online Layer" (key)

3 Then create a Hot-Swap layer by clicking "Create hot swap layer" .
This command causes the system to create a copy of the contents of the
online layer without quitting the online mode. This copied hot-swap
layer may now be modified and testet in evaluation mode without af-
fecting the process. While working on the hot-swap layer the original
online layer is executed in the background with highest priority.

 © iba AG 2009

ibaLogic Manual Page 3-3

4 Switch-over to the modified project by clicking menu Hot Swap
Apply to Online Layer
The modified hot-swap layer will be switched immediately to online
mode during operation (without loss of control cycles).

3

Although ibaLogic is capable of switching over smoothly and without loss of control cycles
there is always a risk of hot-swap switching due to engineering errors in the application
program or wrong parameters. It is always recommended to switch over when the process
or machinery is in safe condition.

3.3 Which tasks should run how fast – and what does it mean?
The essential decision in a project is the one about the project structure. Usually,
a project is devided into separate tasks which could be completely independant
from each other or which could differ from each other in terms of dynamic be-
haviour. It's clear, that a roomtemperature control can work with a cycle time of 1
s when the cycle time of a hydraulic gauge control in a cold rolling mill must not
exceed some tens of milliseconds.

Thus, time is an essential parameter to be considered when dividing a project into
different tasks. The shortest cycle time in ibaLogic is 1 ms.

3.4 Relation between task cycle, processing time and evaluation%
iba guarantees that the tasks can be started in intervals of 1 ms but some condi-
tions apply.

According to the definition a task in ibalogic (Version 3.xx) is uninterruptable.
This has an impact on the cycle time.

Example: Two tasks are defined. Task0 with 5 ms cycle time and Task1 with 100
ms. For the evaluation Task0 needs 2 ms and Task1 needs 8 ms. These values for
the evaluation time can be ascertained with the evaluation statistics. Task1 –
which is uninterruptable – runs longer than the cycle time for Task0 (5 ms) re-
quires. In this case the display of Evaluation [%] in the bottom bar of the ibaLogic
screen shows a value over 100 % because it shows the relation between the
longest evaluation time and the shortest cycle time. For the evaluation of the
function blocks, this is not a problem because the function blocks are designed
time-relativ. Time-relativ means, that each function block checks how much time
has lapsed since it was started (keep that in mind when creating your own func-
tion blocks with time-depending elements).

Of course, the obstruction of the (shorter) task could cause some problems, such
as missing an impuls with a length of 5 ms which is created by switching-on in
one and switching-off in the next cycle. But in order to avoid such problems it is
recommended to use special pulse-generating functions, like with Padu8 O.

Having realized these facts it will lead to the following rule of thumb:

 The evaluation [%] should never exceed 100%, else obstructions or other side
effects are inevitable!

 © iba AG 2009

Page 3-4 Manual ibaLogic

In the ideal case (not a must-be) the total of the evaluation times of all tasks
should be less than the shortest cycle time.

Else, obstructions might occur due to interference of tasks and evaluation times.

The current evaluation times of the tasks can be ascertained by use of the evalua-
tion statistic under menu View Evaluation Statistic.

3

Fig. 41 Evaluation statistic

3.4.1. Order of task processing

Due to certain conditions it might be necessary that the order of task processing
should be changed. Usually the tasks are processed in the order from left to right.
To change the order follow these steps:

1 Right mouseclick on tab of the task which should be shifted (e.g. task
"nContr_1"). Then mouseclick on "Change Order" in the pop-up menu.

2 Then left mouseclick on the tab at the target position for the task, e.g.
"in11"; cursor shape altered.

3 Klick left mousekey again. Task "nContr_1" is now on the left side of Task
"in11" and will be processed before.

 © iba AG 2009

ibaLogic Manual Page 3-5

3.5 The I/O system of ibaLogic
Generally, the iba I/O system receives the data independently from the PC-
processing. (Of course, an application is required for outputs). This happens usu-
ally with a scan rate of 1 ms, i.e. signals will be transferred even if no PC-
application is running.

Exception: When using connections to devices which need bidirectional commu-
nication, such as Padu8 M, a running ibaLogic application is required.

The following table gives an overview of the I/O components of ibaLogic and
their related PC-connection boards.

3

Peripheral device PC-connection board Inputs (I) and/or outputs (O)

Padu8, -16, -32 FOB 4i PCI, FOB IO I

Padu8 M , -ICP FOB 4i + FOB 4o PCI, FOB IO I (outputs for configuration only)

Padu8 O FOB 4o PCI, FOB IO O

ibaNet 750 FOB 4i + FOB 4o PCI, FOB IO I / O

SM 64 IO FOB 4i + FOB 4o PCI, FOB IO I / O

SM 128 V FOB 4i + FOB 4o PCI, FOB IO I / O

CS12/14/16
(Simadyn D)

SM64-SD16
Simadyn D (16 Bit)

FOB SD PCI

FOB 4i + FOB 4o PCI, FOB IO

I / O

I / O

Simatic TDC FOB TDC PCI I / O

Simatic S5, MMC FOB 4i + FOB 4o PCI, FOB IO I / O

Simatic S7, Profibus L2B x/8 PCI, DPM64+FOB I / O

Table 4 I/O components

 © iba AG 2009

Page 3-6 Manual ibaLogic

3.5.1. Identification and naming of I/O resources

There are several ways to describe resources and I/O signals in ibaLogic. Generally,
the name of a signal consists of up to 32 ASCII characters, including special char-
acters and blanks.

 The resources can be renamed in the tree structur in the left part of the
screen (resource area) by two clicks on the signal name or in the resources
margins in the program area after it was placed there by doubleclick on its
name. If a resource has been renamed, the new name will appear every-
where the resource is used in the program. 3

 More than one resources can be exported as a group in a CSV-file. Right
mouseclick on a resource in the group, choose Export, click OK on question
e.g. Export description for resource tree Analog (Real)?, give a filename and
store. The CSV-file can be edited with an usual ASCII editor or other soft-
ware, e.g. MS Excel. If the modified CSV-file has been restored, it can be
imported by ibaLogic, using the menu View Load resource descrip-
tions... Either signals and signal groups (module names) can be renamed.
This function is very helpful if many signals should be renamed.

Please notice that the edited file is stored in the same directory as the source
file, particularly when working with MS Excel. The default-directory for the CSV-
files in ibaLogic is ...\ibaLogic\configuration.

 By using menu View Equalize resource descriptions the resource
names can be transferred from the project to the resource tree or v.v. This
function is useful if project parts of different engineers have to be merged
together or if standard projects have to be adjusted to different I/O sys-
tems.
Remark: The link is always the internal variable name in ibaLogic.

 An I/O-signal which has been placed in the project, i.e. in the function block
diagram can be renamed individually by a doubleclick on the signal. As a
consequence, one I/O-signal may have different names in different tasks!

 All individual name modifications will be reset if an equalization from tree to
project is performed again.

 © iba AG 2009

ibaLogic Manual Page 3-7

3.6 Modes of operation of ibaLogic
ibaLogic offers a variety of operating modes in order to match the needs of dif-
ferent applications. Because ibaLogic may be used as a soft-PLC but as a signal
manager, a signal processor or a simulation tool as well, there are several modes
of operation.

3

3.6.1. Signal Manager

The Signal Manager Mode ensures that ibaLogic won't miss any incoming sample
even if single tasks have been obstructed, i.e. "Evaluation [%]:" has been > 100 %.
The sequence control system of ibaLogic ensures that the data are available
equadistant in the selected sampling cycle. In case of task obstruction cyles are
even made up for the lost time. In the worst case it could occur that ibaLogic
evaluates only "old" values. But it's always ensured that e.g. a FFT analysis can rely
on equadistant and correct values.

Output values will be written by each task at the end of its cycle if output re-
sources are connected in the function block diagram.

3.6.2. Soft-PLC

The Soft-PLC Mode which is suited for control and regulation tasks ensures that
only the freshest signal values are processed. Unlike in the signal manager mode
it doesn't matter whether samples get lost or not. On the contrary, it is intended
to process only the freshest data, i.e. data from the last I/O transfer cycle.

The first task of a new cycle samples the input resources. The "aging" of the re-
sources is determined by the basic sampling cycle time which was set in the
hardware settings. If this sampling cycle time is set to e.g. 10 ms and the first
task has a cycle time of 50 ms, the first task can always process input data which
are not older than 10 ms. But they may be younger.

Output values will be written by each task at the end of its cycle if output re-
sources are connected in the function block diagram.

3.6.3. Turbo Mode

The Turbo mode should be activated when using a PC with double-processor. The
performance and the reliability can be improved in this case because one proces-
sor works only on the application program (runtime) whilst the other cares about
administrative tasks related to the operating system (Windows). Particularly when
working in soft-PLC mode on control and regulation this option is highly recom-
mended.

3.6.4. Playback

The playback mode is a very useful feature for the simulation of processes.

In playback mode a data file which had been recorded with an iba online aquisi-
tion program such as ibaPDA, ibaQDR or ibaScope, may be replayed like a tape
recording and thus be used as a source of input signals. The special quality is the
fact that real data of a plant or a process are used for simulation and testing,
reaching a higher physical fidelity than by process modeling. Especially for re-
vamp projects this is an interesting point.

 © iba AG 2009

Page 3-8 Manual ibaLogic

3.6.4.1. Using the playback function

1 The precondition for using the playback function is the activation
(checkbox) of the "Playback mode" in the menu File System settings

General (refer to chapter 2.5.1)

2 Furthermore one should decide whether to use hardware I/Os or not
together with the playback operation (... System settings Other, re-
fer to chapter 2.5.2)

3

4
 entries of start- and endtime. Select replay mode and repeat

5
nd channel-IDs should be assigned to the in-

3.6.4.2.
le assignment >>" in the playback dialog win-

3 For the configuration of the playback function use the menu File
Program settings Playback (refer to chapter 2.4.4). If a valid data file

is available in the specified folder, the essential data like starttime, sam-
pletime and number of frames will be displayed in the dialog window.

If a certain time range in the data file isn't of interest yet, disable the
manual
mode.

Now it's time for the module assignment. The recorded signals which
are identified by module- a
put resources of ibaLogic.

Module assignment for playback

A mouseclick on the button "Modu
dow opens the following dialog:

back module assignment Fig. 42 Play

The left part of the window shows the modules as they are stored in the data file
and as they had been defined in the acquisition system respectively. The module
names are displayed but the names of the signals can not been seen.

The right part of the window shows the input resources which may be used for
playback operation. These are resources of the types FOB-F / FOB IO In, L2B In and
Playback only.

 © iba AG 2009

ibaLogic Manual Page 3-9

3

 data file module.

T
n

1

he assignment concerns modules only (32 analog + 32 digital signals each) and
o single signals:

 First select a module of the datafile in the left field by mouseclick.

2 Then open the tree in the right field for the ibaLogic resources you want
to use for playback by clicking on the little "+" and check the module
you want to assign to the selected
Example: All the signals of the data file module no. 0 should be as-
signed to the ibaLogic module 0 of the FOB-F input resources.

 The a
done " is selected in the system
se n
har w ight be overwritten by the datafile signals. If either
hardw
simult on) it is recommended to assign the data file
m u

ssignment of data file modules to FOB-F or L2B input modules should be
only if the playback operation "without HW I/O

tti gs (menu File System settings Other, Playback settings), otherwise the
d are input signals m

are input signals and data file signals should be used in playback operation
aneously (mixed operati

od les to the PlaybackIn modules.

3 The numbers of assigned modules must not be equal. It is also possible
to assign a data file module 1 to an ibaLogic input module 5, for exam-
ple.

4 After completion of the module assignment the kind of values and the
datatype of the inputs may be selected.
 always use raw values: ibaLogic takes the signal values as they are stored in

the data file. This option will prevent another scaling in ibaLogic of the sig-
nals which had been already scaled in ibaPDA or are available in physical
units.

 always use scaled values: ibaLogic takes the signal values from the data file
and scales them using the "minscale" and "maxscale" information which is
stored in the data file with each signal as well.

 always Real input resources: All analog input resources will be evaluated as
of datatype REAL.

 always Integer input resources: All analog input resources will be evaluated
as of datatype INTEGER.

 automatic: The input resources will be evaluated according to the datatype
stored in the data file.

 © iba AG 2009

Page 3-10 Manual ibaLogic

These five settings may be used in combination, but just a few make sense:

Datatype in
data file

always raw
values

always
scaled values

always
Real

always
Integer

always
automatic

INT16

INT16

INT16

REAL

3
 = combinations that make sense

The playback operation will be started finally by activating the evaluation mode,
or the online mode, respectively.

 © iba AG 2009

ibaLogic Manual Page 3-11

3.7 Fault management

3

3.7.1. Zeros on broken links

The activation of this option causes a reset of all input signal values of a module
to zero (0) in case of a communication breakdown between an FOB-F / FOB 4i
board and the peripheral devices. The advantage is to set a defined and safe state
of the input side in case of a malfunction. If this option is not active in case of a
fault the latter input values will remain.

3.7.2. Unavailable signals are invalid

 Signals are unavailable when the related PC-board which the input signals are
assigned to is not there or not working. If this option is selected, the unavailable
signals will be marked as "invalid" in the ibaLogic layout (see below).

If a PC-board is installed and working, then the assigned signals are considered as
available.

 Disconnecting the fiber optical cable or switching off a peripheral device, e.g. a Padu, will
not cause the system to declare the signals as "unavailable"!

Signals will be marked as "invalid" in the layout by a red frame. Because the status
"invalid" of a signal or variable can be passed on, also the variables which derive
from computations or interlockings with invalid variables will be marked as inva-
lid too.

 © iba AG 2009

Page 3-12 Manual ibaLogic

3.8 ibaLogic handling

3.8.1. Drag & drop

The handling of ibaLogic is done usually by simple drag & drop methods like in
many other Windows NT® applications. I/O-signals or function blocks in the re-
source area can be selected by a left mouseclick (hold) and "dragged" into the re-
quired area, e.g. input signal margin, program area or output signal margin.

33.8.2. Right mousebutton

Using the right mousebutton anywhere in the program area or in the in-
put/output signal margins will open a window with the "Edit"-menu functions as
described in chapter 2.3.2.

Using the right mouse button on an input or output signal in the resource area
will offer opportunity for resource group export as described in chapter 3.5.1.

Using the right mouse button on a tab in the task selection bar will open a menu
for task settings as desribed in chapter 3.4.1. and 3.8.3.

3.8.3. Adjust the size of the program area of a task

The initial size of a task's program area is one page. If this is not enough space for
an application, the size can be adjusted individually for each task. There are two
ways to change the size or to add more pages, respectively:

1 Place the cursor on the lowest or on the far right borderline (cursor shape
switches to , resp. to), press the left mouse button and drag the bor-
der slightly down, resp. to the right and a new page will be added below,
resp. on the right side.

2 Another way is to use the menu Edit Task Configure Task..., in or-
der to open the window "Task Settings" where the number of pages in
horizontal and vertical direction can be adjusted, in the example below a
total of 10 pages.

Fig. 43 Task settings dialog

 © iba AG 2009

ibaLogic Manual Page 3-13

3.9 Selection and connection of function blocks
The engineering of the application is done by use of function blocks. By clicking
on the "Functions"-tab at the bottom in the resource area one switches from the
resources to the function block directory. For the purpose of a better clearity, the
function blocks are subdevided in seven groups.

3

 Basic Functions

 Basic FBs

 Global Variables

 Global FBs and Macros

 Global DLLs

 Local FBs and Macros

 Local DLLs

The function blocks are described in detail in 4".

After selection of the desired function block, e.g. the multiplier "mul", from the
directory "Basic Functions arithmetic" by use of the left mouse button, just drag
it into the program area and let it drop.

All other function blocks can be placed in the program area in that way.

Fig. 44 Placing a function block in the layout

 © iba AG 2009

Page 3-14 Manual ibaLogic

3

3.9.1. Connection lines and branching

ibaLogic provides three types of connections: connection lines, IntraPage connec-
tors and OffTask connectors.

In order to connect one function block with another, just click on the in- or out-
put of the first function block and drag the line to the out- or input of the other
function block.

There are three types of lines which are classified as belonging to different data
types and which are represented in different colors.

 Binary connections; they show the current logical state of a line, i.e. of the
represented signal:
blue = low / FALSE, red = high / TRUE (in online or evaluation mode)

 All other datatypes are represented by grey connection lines, i.e. INT, REAL,
LREAL etc.

 Arrays, resp. vectors, are represented by green lines. Only arrays of the
same lentgh and datatype can be connected with each other. If the size of
an array changes, the connection has to be cut first and reinstalled after.

The drawing of lines is done easily by placing the cursor on the sensitive area of a
function block or an I/O-resource (cursor shape changes to ¤), press the left
mouse button (hold), drag the cursor over the target connection point and let the
mouse button go. (If a valid connection point is recognized, the cursor shape
switches to "cross-hair sight"). The routing of the line is done automatically.

Starting point of a line Target point of a line

If the route of a line shall be changed, this can be done by placing the cursor on a
kink of the line (cursor shape changes to an 4-arrow-cross), pressing the left
mouse button (hold) and drag the line to the new position. If the objects to be

re too c uter m
dering lines. To avoid this, move the blocks more apart.

Change line route Line routing, objects too close Better line rout, objects apart

connected a lose to each other the auto-ro ay create loops or mean-

 © iba AG 2009

ibaLogic Manual Page 3-15

Line branches are created by drawing backwards from the target point of the
new line to a point on the main line where the branch should be placed. At that
position a (branch-) point appears on the line. This point can be shifted along the
line or be used for change of line routing as well.

3

Drawing branch line from terminalpoint to main line Shifting the branch point

somewhere to a free space in the
program area. The related line will disappear.

e
steps. Objects can be moved in the area but the fixed point stays where it is.

r with it. If
ed, the connection lines can be shifted manually (see above).

 as they are connected with one source or

target object with a declared data type.

ks will get lost, because default values are only permitted when data

To delete a connection, just select the line at its starting- or target point and drag
it away (disconnect it) from the function block

Branches and kinks of lines can also be fixed in their position by pressing the
right mouse button when the cursor is placed on such a point. A fixed point is
marked by a little cross () on the line. To remove a fixed point repeat thes

ibaLogic checks automatically whether the data types of input and output match.
If not, ibaLogic performs the action which has been defined under menu File

 Program settings Conversions. ibaLogic provides "Autorouting", i.e. if a func-
tion block is shifted, all of his connections will be shifted togethe
need

 Function blocks with untyped input and output connectors (overloadable) will adopt
the data types for the connectors as soon

The other way round, these function blocks will loose their data type definition as soon
as the last type-defining connection has been cut. At the same time all default values in
these function bloc
types are defined.

 © iba AG 2009

Page 3-16 Manual ibaLogic

3

3.9.2. IntraPage connectors (IPC)

An IntraPage connector (IPC) is a mean to simplify the diagrammatical represen-
tation – it's a replacement for a connection line. The use of IPCs is recommended
if many objects on a page have to be connected or if long connection lines over
several pages are required. The IPC can only connect objects which are located on
the same hierarchical level, e.g. in one task or inside of a macro block. It's not
possible to use IPCs for connections between objects on different levels, e.g. from
the inside of a macro block to a function block outside of the macro in the pro-
gram area.

There are three ways to create an IPC:

1

Press the ALT key and draw a line from a starting
point to a free space in the program area. The
starting point for a signal source (for a "sending"
IPC) is usually the output of a function block. To
create the counterpart of a "sending" IPC (the
"receiving" IPC), do it in the same way, starting
at the target connection point (usually an input)
and drawing the line "backwards" into a blank
area. See example, left, at oscilloscope-block. If
there are already IPCs in the program a selection
list is displayed when creating a "receiving" IPC
(e.g. add_1.out and mul_1.out). To connect, just
select the desired IPC source and the connection
is ready.

2

...or, by making a connection between two ele-
ments which are placed on different pages.

Connection lines which already exist won't be
split up by dragging the function block over a
page border.

 © iba AG 2009

ibaLogic Manual Page 3-17

3

...or click on an existing connection line with
pressed ALT key. The line, resp. the related net-
work will be split up if acknowledged. Note,
that branched connections will be replaced dif-
ferently depending on the place where the IPC is
defined. If the IPC is defined on a point-to-point
connection or on a branch "behind" (in terms of
data flow) the branching point without any fur-
ther branches there will be just one sending and
one receiving IPC (a).

If the IPC is defined "before" the branching point
there will be one sending and as many receiving
IPCs as branches (b).

3 a)

 ↓

b)

↓

The name of the IPC is given automa

tically depending on its origin. It could be

 by doubleclick on either the source part or the target part. Even the posi-
on and the size of the IPC can be changed. The size of the IPC can also be preset

File Program settings Edit.

hod to delete an IPC is the same as for connection lines by disconnecting
the source, resp. the target point. If a signal source for a "sending" IPC is deleted
the "sending" IPC itself and all corresponding target IPC will get lost as well. Tar-
get IPCs can be deleted individually.

A source-IPC as an object can only be deleted after all of its targets has been de-
leted.

FUNCTIONBLOCK.CONNECTOR or TASKNAME.LABEL. Of course,an IPC can be re-
named
ti
in the menu

The met

 © iba AG 2009

Page 3-18 Manual ibaLogic

3.9.3. Off-Task connectors and OPC-connections

OffTask Connectors (OTC) are used for inter-task communication whenever a con-
nection between one or more tasks is required.

Creating an OffTask connector

1 Place the mouse cursor in blank space of the layout.

3

he name may apply, please refer to chap-

4

e OffTask connector will be pasted as a target connector

e
, the desired source connector and uncheck

2 Open the menu Edit New Off-Task Connector (or via context
menu); the dialog as shown beneath will open.

3 If a new OffTask connector should be created please enter first a name
into the field "Name". ibaLogic will give an error message and reject the
name if a source connector of the same name is already defined.
Some restrictions concerning t
ter 7.2 for more information.

There are two methods to create a target connector:
a) Select the source connector (click) and copy it to the clipboard then
switch over to the task where the target connector should be placed
and paste it. Th
automatically.
b) Switch over to the task where the target connector should be placed
and open the same dialog as described in step 2. In the dialog open th
picklist in the field "Name"
the box "Output source".

Fig. 45 OffTask connector, dialog

 © iba AG 2009

ibaLogic Manual Page 3-19

 Settings

3

 Description: Entry of an explanatory comment. This description will also ap-
pear in the tooltip pop-up when the mouse cursor is placed on the connec-
tor of the OTC.

 Type: Selection of the desired datatype from a picklist.
 Default: Display or entry, respectively, of the default value of the OTC. After

programstart the OTC will use this value. If the option "OPC-writing sets de-
fault values" in the menu File Program settings Edit has been acti-
vated the default value of the OTC can be overwritten by an OPC-client, e.g.
by a HMI system.

 Output Source: Check this box if the OTC is supposed to transmit data.
When defining an input connector (target-OTC) uncheck this option.

Because OffTask connectors are the link to / from an OPC-interface there are two
more options available:

 ©

 OPC Visible: ...when checked, this option enables the OTC to be visible in
the browser of a connected OPC-client, OPC-icon in dialog changes (see
left)

 OPC->ibaLogic: ...when checked this option allows an OTC (input / target-
connector) to be written by an OPC-client.

Thanks to these options OTCs may be used for communication with HMI-systems.
In that case ibaLogic is always OPC-server. OTCs, tagged as OPC Visible are visible
in the browser of the OPC-client and can be selected for display.

If OPC->ibaLogic is activated a HMI system can send data to ibaLogic. The option
OPC->ibaLogic can only be activated for target connectors which have no corre-
sponding source-OTCs.

Inside one task an OTC can only exist one time, i.e. two or more "receiving" OTC
with the same name in the same task are not allowed. (This is done with IPCs.)

"Receiving" OTCs, resp. target-OTCs can exist without a corrsponding source-OTC.
The output of such an OTC is defined by its default value. Furthermore, target-
OTCs without a source-OTC are represented by grey color in the diagram.

Because OTCs are objects they can be placed, deleted and altered in the usual
way.

An OffTask connector has a dark grey color if it is neither declared as an output
source nor connected to a data source. Else, it has a light grey color.

 iba AG 2009

Page 3-20 Manual ibaLogic

3

3.9.4. Switch and slider - smart helpers for testing

Switches are used for the online-operation of binary signals. On a right mouse-
click the switch acts like a ON/OFF-switch (1st click = ON, 2nd click = OFF). On a
left mouse-click the switch acts like a push-button (ON as long as mouse-button
is down). The operation of analog values is performed by sliders which allow to
alter a value continuously between MIN- and MAX-limits by shifting the slider
knob with the left mouse button. For accurate adjustment (increments of 1/1000)
click shortly in the slider field and then use the cursor keys ← / → on your key-
board. Both switch and slider will stay on their settings even after Stop / Start of
the layout.

(see example below).

Example for use of switches and sliders

Fig. 46 Switch and Slider, sample application

 © iba AG 2009

ibaLogic Manual Page 3-21

3.10 Combining objects and creating macros
One of the outstanding features of ibaLogic is the easy way to cast a network of
several objects, e.g. function blocks, and their connection lines into a new func-
tion block (macro block). This so called "Bottom-up design" feature is very useful
for improving the clearity of a network or for reusing a complex function several
times.

3

As an example let's take a simple interlocking function as
used for solenoid valve control. In order to avoid the use
of these four function blocks tens of times in a project it
is recommended to build a macro block.

To combine the corresponding function blocks mark
them by clicking the blocks with <SHIFT>-key pressed or
using the multiple block selection mode (button in
the tool bar).

The function blocks and their connection lines are se-
lected. Then press <SHIFT> and the right mouse button
to get the edit menu and choose Block Function
Implode and confirm the query.

A new function block will be created. Doubleclick on the
new block will open it for display and editing of the in-
ner logical structure.

In order to make this macro block independent from the
former in- and outputs and to make it available for mul-
tiple use, the name, the in- and outputs should be re-

Modify Macro Block (macro block must
be selected)

named.

This has to be done in the dialog which opens under
menu Edit

 © iba AG 2009

Page 3-22 Manual ibaLogic

On the other side, there is the possibility to create an empty macro block first and
fill in the functions later (top-down design). For that, use the menu Edit
New Macro Block and define the input- and output connectors of the macro
block. Only these connectors will be available as inputs and outputs inside the
macro block.

Fig. 47 Creating a macro block

To leave the macro level in the function block diagram click the right mouse but-
ton and choose Back to parent or press <Ctrl>+<Backspace>.

3

 © iba AG 2009

ibaLogic Manual Page 3-23

3.11 Creation of a new function block
ibaLogic possesses a large library of ready-to-use function blocks. (See 4).
Though, the major part of problems can be solved with these function blocks it
may be required to have a specialized function block for a particular solution. For
that, ibaLogic offers two easy methods.

3

3.11.1. Creating a function block without Structured Text (ST)

Example: The new function block should return the difference of two input values
on one hand and their average value on the other hand.

Open the function block window by means of the "Edit-menu" (Edit New
Function block).

Fig. 48 Create a new function block

Start by modifying the entries in the following fields: Inputs to “2”, Outputs to
"2", Name to “fb_example_1”, Description to “This function block returns...”.

Notice that each time you add either inputs or outputs, new rows are added ei-
ther on the corresponding yellow or blue space. If you decrease the number of
inputs or outputs, then the rows are deleted after accepting the confirmation dia-
log. For each input click on the field in the column Type and select “Real” from
the list of possible options, take a time to explore all types that you can use in the
future. The default type "LREAL" comes from the system's general settings under
menu File Program settings Edit Settings, Preset.

The names of the input and output signals (i0, i1, o0, o1) may be renamed as
well, if required, e.g. "diff" instead of "o0" and "avg" instead of "o1". To rename the
signals just click in the corresponding fields in the table and overwrite the old
name.

 © iba AG 2009

Page 3-24 Manual ibaLogic

These are just examples for names to give. You may choose any name for your
project layout. Be careful not to use reserved names as explained in the manual. If
you do so, a warning message will appear and the entry will be rejected.

You can also change the default values, but this doesn’t make sense for our ex-
ample, keep it in mind for you future projects. Notice the buttons on the right
side of the tables in the dialog that enable you to move or modify the selected
row.

Now, you have to program the function block.

Assure that the Structured Text check box is unchecked and click in the row of the
first output in the blue area. In the white "Expressions" area you'll find a table
with all defined outputs. In this table, column "Expressions" you may enter all
statements and expressions for the evaluation of the corresponding outputs. Use
only simple mathematical expressions, formulas or assignments, as shown in the
example or in the table below. For the second output do the same accordingly.

3

Fig. 49 thout ST

3.1 1. ations for si e FB-creation

Create FB wi

1.1. Oper mpl

Operation Example Result of example Description Priority

() (2+3) * (4+5) ighest 45 Brackets h

** 3**4 81 Power

- -10 -10 Negation

NOT NOT DIG01 FALSE (if DIG01=TRUE)
f DIG01 = FALSE)

TRUE (i

Inversion

* 10*3 30 Multiplication

/ 6/2 3 Division

+ Addition 2+3 5

- 4-2 2 Subtraction

<, >, <=,
>=

FALSE 4 > 12 Comparison

&, AND TRUE & FALSE FALSE Boolean AND

XOR TRUE XOR FALSE TRUE Boolean Exclusiv OR

OR TRUE OR FALSE TRUE Boolean OR lowest

Table 5 Operations for simple FB-creation (no ST)

You may check the correct programming of your o eration by pressing the
"Check" button.

the "OK" button and place the function block in the diagram.

p

When done, press

 © iba AG 2009

ibaLogic Manual Page 3-25

3

Placement of new FB Fig. 50

Export" button before clicking the "OK" button, then the FB you
e "Local FBs and

or large projects. The

 it by e-mail. When somebody share an FB with you, copy

the .fbm file in the \FBs_Macros folder on your hard drive before starting
ibaLogic

 just created will be available for drag and drop use on th
Macros" folder in the "Functions" tree. This is really useful f

If you click the "

FB is physically stored as .fbm file under \ibaLogic\configuration\FBs_Macros
folder on your hard drive. You can share with more people your FBs by copying
this file or by sending

3.11.2. Cre

e applies. But in order to program a func-
in the function

block dialog window.

ating a function block with Structured Text (ST)

 The same principle as decribed befor
tion block in ST you must check the "Structured Text" check box

Fig. 51 ST

No one ogram code for the e no indi-
assign as before.

 a look on some basic terms and elements of ST.

Create FB with

w, there is only pr ntire function block and
vidual output ment

First, let's have

 © iba AG 2009

Page 3-26 Manual ibaLogic

3

Text (ST)

3.11.2.1. Operations and statements in Structured

Programs written in ST look very much like those programs written in PASCAL. In
ST a statement is terminated by a smicolon. Comments are marked with (* at the
beginning and *) at the end. Data are processed by expressions and statements.
Expressions consist of operations (see table below) and operands and they deliver
a result. Operands can be literals, variables, other expressions and function calls.

Operation Example Result of example Description Priority

() (2+3) * (4+5) 45 Brackets highest

** r 3**4 81 Powe

- -10 -10 Negation

NOT NOT DIG01 FALSE (if DIG
RUE (if DIG0

 01 = TRUE) Inversion
T 1 = FALSE)

* 10*3 30 Multiplication

/ 6/2 3 Division

MOD MOD (17,10) 7 Modulo (Divisionsrest)

+ 2+3 5 Addition

- 4-2 2 Subtraction

<, >, <=,
>=

4 > 12 FALSE Comparison

= T#26h = T#1d2h TRUE Equal

<> 8 <> 16 TRUE Not equal

&, AND TRUE & FALSE FALSE Boolean AND

XOR TRUE XOR FALSE TRUE Boolean Exclusiv OR

OR TRUE OR FALSE TRUE Boolean OR lowest

Table 6 Operations in ST

3.11.2.2. Data declarations in Structured Text (ST)

In ST-statements the datatypes UDINT and DWORD shall be marked with "#" (e.g.
UDINT#0, DWORD#0) in order to distinguish between them and signed INTEGER-
variables. Constants on base 16 (hex) are declared by "16#" (e.g. 16#2BC1F9) and
they are automatically considered as DWORD. Constants on base 2 are declared
by "2#" and those on base 8 by "8#". Time variables are declared by "T#" supple-
mented by "d" (day), "h" (hour), "m" (minute), "s" (second) and "ms" milli second
(e.g. T#67d12h17m42s).

Data declarations in ST (represented as text):

 VAR_INPUT
 in_bool: BOOL := FALSE;
 in_int: INT := 0;
 in_dint: DINT := 0;
 in_udint: UDINT := UDINT#0;
 in_dword: DWORD := DWORD#0;
 in_real: REAL := 0.0;
 in_lreal: LREAL := 0.0;
 in_time: TIME := T#0ms;
 in_string: STRING := '';
 END_VAR

 VAR_OUTPUT
 out_bool: BOOL := FALSE;
 out_int: INT := 0;
 out_dint: DINT := 0;
 out_udint: UDINT := UDINT#0;
 out_dword: DWORD := DWORD#0;
 out_real: REAL := 0.0;
 out_lreal: LREAL := 0.0;
 out_time: TIME := T#0ms;
 out_string: STRING := '';
 END_VAR

 © iba AG 2009

ibaLogic Manual Page 3-27

3.11.2.3. Statements in Structured Text (ST)

3

Statement Example Descriptions

RETURN RETURN; Go back, immediately abort function block

IF IF a < b Comparison, selection

 THEN c:=1;

 ELSIF a = b

 THEN c:=2;

 ELSE c:=3;

 END_IF;

CASE CASE f OF Selection

 1: a:=3;

 2: a:=4;

 ELSE a:=0;

 END_CASE;

FOR FOR a:= 1 TO 10 BY 2 DO loop (unconditional)

 f[a] := b;

 END_FOR;

WHILE WHILE b > 1 DO loop (conditional)

Not supported b := b/2; Not supported, risk of

 END_WHILE; endless loops

REPEAT REPEAT a:= a * b; Repetition

Not supported UNTIL a > 10000 Not supported, risk of

 END_REPEAT; endless loops

SET_VALID SET_VALID (<Variable name>,
FALSE)

Set a variable valid / invalid (z.B. FB-
Anschluss)

SET_DEFAULT SET_DEFAULT (<variable name>,
<value>)

Set a default value of a variable

ARRAY-access <variable name>[i]

<variable name>[i,j,k,m]

Access on an one-dimesional array

Access on an four-dimesional array

EXIT EXIT; Immediately abort function, e.g. in FOR-
loops

Table 7 Statements in ST

 Please note that FBs can not be used in ST-statements or operations. Only
functions are allowedto be used.

Moreover, some restrictions apply concerning the usage of names for FBs, or
functions which are reserved by ibaLogic, see chapter 7.2.

 © iba AG 2009

Page 3-28 Manual ibaLogic

3

3.11.2.4. Function block PT1 in Structured Text (ST)

In the following a delay element of 1st level (PT1) is taken as a model for the crea-
tion of a function block.

The mathematical definition of a PT1 element is:

)e-(1 X1e*Y Y -(TA/T1)
1-n

-(TA/T1)
1-n +=

with:

 Y = Output value of PT1-element
 Yn-1 = Output value of the previous program cycle
 X1 = Input value
 X1n-1 = Input value of the previous program cycle
 T1 = Delay time [sec], output value is about 63% of input value
 TA = Scan time [sec]

A variety of function blocks for regulation require the task scan time and the
lapsed time since start of the application. These time values are made available by
the global variables in ST:

g_EvalDeltaTime = time lapsed since last start of the task; the use of this vari-
able will help to eliminate deviations in scan time and to
evaluate the correct results.

g_EvalTime = time lapsed, since start of the application

Function block "PT1_M" Programmcode "PT1_M" in Structured Text

TA_T1:=-time_to_lreal(g_EvalDeltaTime)/T1; (* Get Cycletime
TA and evaluate –TA/T1 *)
E_TA_T1:=2.71828**TA_T1; ; (* Evaluate e** TA/T1*)
Y:=Y * E_TA_T1+(X_N1*(1.0-E_TA_T1)); (* Y- calculation *)
X_N1:=X1; (* Copy X1(n-1) = X1 *)

Regulator output PT1-function block

d: scan time const. 50 ms

b
re

lue: scan time const. 10ms

0,00

100,00

200,00

300,00

400,00

500,00

600,00

700,00

800,00

900,00

1.000,00

0 60 12
0

18
0

24
0

30
0

36
0

42
0

48
0

54
0

60
0

66
0

72
0

78
0

 © iba AG 2009

ibaLogic Manual Page 3-29

To create a function block use the menu Edit New Function Block...

3

In the new dialog window there are five areas as follows:

 General

Definition of number of in- and outputs, function block name and description

 Inputs

Definition of input variables with data type and description

 Outputs

Definition of output variables with data type and description

 Variable

Definition of block-internal variables with data type and description

 Definition

Structured Text (ST) statements and expressions

Fig. 52 Create function block PT1M

 © iba AG 2009

Page 3-30 Manual ibaLogic

3.11.3. Examples for statements in Structured Text (ST)

The following examples show the essential statements in ST (if, case, for etc.),
used for function blocks.

3

3.11.3.1. IF- and ELSIF-statement

The function block to be created "selMin" should always return at the ouput "val"
the lower value of either of its two input values "a" or "b". If the input "a" is lower
or equal to "b" then the boolean output "a_min" is set TRUE. If inputs "a" and "b"
have the same value then the LReal-output "val" is set to 0.0 and the boolean
output "A_equ" is set TRUE.

Function block "selMin"

Program code "selMin" in Structured Text

oB_a_equ:=FALSE; (* Default setting *)
if iL_a=iL_b
 then oL_val:=0.0; (* a=b, Output=0.0 und equ=TRUE *)
 oB_a_min:=TRUE;
 oB_a_equ:=TRUE;
 elsif iL_a<iL_b (* Check a<b *)
 then oL_val:= iL_a; (* a is smaller, Output to val *)
 oB_a_min:=TRUE; (* a_min = TRUE *)
 else oL_val:= iL_b; (* b is smaller, Output to val *)
 oB_a_min:=FALSE; (* a_min = FALSE *)
 end_if;

Application model "selMin"

3.11.3.2. CASE-statemen

The function blo l_w"
one of the thre y the value of INT-
input "sel". If the sel_w" will be set to
0.0 and the boo

Function block "selSetpoint"

t

ck to be created "selSetpoint" should return at the output "se
e LReal-inputs "w0", "w1" or "w2", selected b
 input "sel" is not equal {0, 1, 2}, the ouput "
lean output "Err" will be set TRUE.

oB_Err := FALSE; (* Default setting *)
CASE iI_sel OF (* CASE- selection 0,1,2 *)
0: oL_sel_w:=iL_w0; (* CASE = 0 *)
1: oL_sel_w:=iL_w1; (* CASE = 1 *)
2: oL_sel_w:=iL_w2; (* CASE = 2 *)
ELSE oL_sel_w:=0.0; (* value iI_sel unequal 0,1,2 *)
oB_Err:= TRUE; (* sel_w = 0.0, Err = TRUE *)
END_CASE;

Program code "selSetpoint" in Structured Text

 © iba AG 2009

ibaLogic Manual Page 3-31

3.11.3.3. FOR-statement

The function block to be created "evalMV" should return the total sum and the
average of an array of 16 LReal variables. The function block uses the internal
variable "count" for counting.

3

Function block "evalMV"

Program code "evalMV" in Structured Text

oL_total:=0.0; (* Default setting *)
FOR count:=0 TO 15 DO (* FOR- 0 to 15 *)
 oL_total:= oL_total+iL_Array[count]; (* total-value *)
END_FOR;
oL_MV:=oL_total/16.0; (* Mean Value evaluation *)

3.11.3.4. EXIT- and RETURN-statement

The previous created function block "evalMV" has been renamed in "evalMV_var"
and supplemented with a further INT-input "iI_Num". This additional input defines
the range for sum and average evaluation in the array, e.g. 7 = sum and average
of array-elements no. 0 ...7. By the mean of the "EXIT" statement in the IF-query,
the FOR-loop will be terminated before reaching its limits, but the average value
will still be evaluated. Using the "RETURN" statement instead of "EXIT" will termi-
nate the function immediately without evaluation of the average value.

Function block "evalMV_var"

Program code "evalMV_1" in Structured Text

oL_total:=0.0; (* Default setting *)
FOR count:=0 TO 15 DO (* FOR- 0 to 15 *)
 oL_total:= oL_total + iL_Array[count]; (* total-value*)
 IF count>(iI_Num-1) (* max. Number Input reached *)

T; (* or RETURN; FOR- Loop termination *) THEN EXI
F; END_I

END_FOR;

oL_MV:=oL_total/int_to_real(iI_Num+1); (* Mean Value *)

Application model "evalMV_var"

 © iba AG 2009

Page 3-32 Manual ibaLogic

3

own DLL name.

4 library name in theDLL.def file according to your own

nd .hpp file to your project.

7 Copy the new DLL into your IBALogic directory.

3.12 Creating your own DLL
Creating macros and function blocks with ST are very simple ways to solve many
problems of automation. But as easy it is to create them as easy is it to copy them
and to unserstand their manner of working.

Sometimes you may prefer a less open prove of your engineering expertise, e.g.
in case of a sophisticated technological solution but you want to prevent the
cheap distribution of your know-how.

In such a case the possibility of creating DLLs which include your brain's work in a
compiled form so that no one can figure out your tricks is a real advantage.

3.12.1. C-Compiler

For writing and compiling the DLLs we've tested and approved the following C-
compilers:

 Microsoft Visual C++ 5.0

 Microsoft Visual C++ 6.0

 Other, such as Borland are supported too

3.12.2. Source files needed for creating DLLs

The following source files which come with the ibaLogic installation CD-ROM are
required:

 namedll.cpp: contains the Procedures and the DLL – Body;
the user may add inputs, outputs or make changes in the Procedures
InitEvaluation, Evaluate, ExitEvaluation

 namedll.def: contains the Assignment between DLL Procedures and Num-
bers; the library name must match the DLL Name !!!

 dllForm.hpp: contains the interface definition;
no changes neccessary.

 Refer also to chapter 7.1. There you'll find the program lisitngs of the "sam-
pleDLL" which is delivered along with ibaLogic.

3.12.3. Procedure for creating new DLLs

For creating new DLLs it is recommended to use the simpleDLL frame:

1 Create a new DLL project with your own DLL name.

2 Copy the simpleDLL.cpp, simpleDLL.def and DLLform.hpp files into your
project directory.

3 Rename the simpleDLL.cpp and simpleDLL.def files according to your

Change the
DLL name.

5 Add the .cpp, .def a

6 Build the new DLL.

 © iba AG 2009

ibaLogic Manual Page 3-33

3.12.4. Frequent obstacles

3

 Don’t forget to add the .def File to your project, else the DLL won’t work
with IbaLogic.

 You may add and use variables to your DLL or Evaluate Procedure, but if
you use more than one instance of the same DLL you must save the data
used between two calling cycles in the dynamic data area. Otherwise the
variable exits only once for all instances.

 In case you want to calculate some cycle time-dependent functions you
should use the variable "pGlobal" which is a pointer to a relative time vari-
able.

 The DLL runtime will be added to the cycle time of the task which is calling
the DLL.

 It is recommended to use threads for time consuming functions.

 Function blocks should use the "invalid flag" and they should write data to
the periphery only if the "online flag" is set.

 For the purpose of testing a DLL ibaLogic may be started as the executing
program.

 The interfacing functions of a DLL will be called directly from ibaLogic.

 Not all programming errors which may be included in a DLL can be de-
tected and cushioned by ibaLogic. Hence, these errors may even cause a
crash of ibaLogic.

 © iba AG 2009

Page 3-34 Manual ibaLogic

3.12.5. Linking the DLL in ibaLogic

ibaLogic uses the following calls in conjunction with the function block interface:

Call Function

GetInstanceDynamicDataSize() Query for fixing the size of dynamic data

GetDllDescription() Query of description of the DLL

GetCount() Query of number of inputs and outputs

GetName() Query of name of each input and output

GetDescription() Query of description of each input and output

GetType() Query of datatype of each input and output

GetArrayHeader() Query of array datatype of an input or output

GetDefaultValue() Query of default value of an input or output

3

The following call will be needed in runtime:

Call Function

InitEvaluation() Single call at start of evaluation; used for initialization

SetInputValue() Cyclic call for every input once per cycle prior to each
evaluation.

Evaluate() Cyclic call once per cycle

GetOutputValue() Cyclic call for every input once per cycle after each
evaluation.

Exit Evaluation() Single call at end of evaluation; used for cleanup

 © iba AG 2009

ibaLogic Manual Page 3-35

3.13 Testing and debugging of projects
ibaLogic offers several tools for the purpose of testing function blocks and more
complex networks.

3

3.13.1. Single and multiple step mode, halt the project

If a project is being evaluated it could be switched into single or multiple step
mode. This is useful in order to test sheer logical functions (sequences). There are
the following corresponding buttons in the tool bar:

 (from left to right: Start/Stop Evaluation, Pause Evaluation, Evaluate 1
step, Evaluate n steps)

In order to switch in single or multiple step mode first press the pause-button.

If the project is running online (purple background color) there won't be no
refresh of the external resources (in-/outputs) for the time between two steps!
This means that the values will stay as they are what may have an unpleasant
impact on the process.

In this case there is a risk of hazard for life or machinery!

The number of steps to be evaluated at one click of "multiple step" can be ad-
justed from 2 up to 64 steps in the menu Evaluate Set Multiple Step Count.

3.13.2. What to do, if values become sporadically invalid?

During evaluations it may occur that output values of function blocks become in-
valid due to bad starting conditions, division by 0 or limit violations.

Such invalid states are indicated in ibaLogic by a red cross in the output "terminal"
of the function block, a red frame for the output value display and – if running in
evaluation mode – the red representation of the value itself.

What could cause a variable to become invalid?

 Invalid real value

 Division by zero

 Intended setting of the "Invalid-bit" with set_valid(<variable name>, FALSE)

 Assignment of array elements if the index limits are violated

 Assignment of expressions, which contain already invalid values

 Being part of a chain or loop and depending on other variables in the same
chain which are invalid.

 Input resources if the corresponding PC-board (FOB IO, FOB 4i) is not avail-
able or not alive and if the option "Unavailable signals are invalid" has been
selected in the system settings.

 © iba AG 2009

Page 3-36 Manual ibaLogic

 1. Note: Arrays have exactly one valid-flag. If one element in the array is
invalid, so is the entire array.

2. If a variable becomes invalid, the last valid value is preserved.

3. If an invalid variable occurs in a diagrammatical feed-back branch, there are
several measures available for trouble-shooting or correction:

• Start/Stop Evaluation or
• Breaking up the logical network (delete a connection line, insert a

function block etc.) or
• insertion of a "set_valid"-statement [set_valid(<variablenname>,

TRUE)] into the logical network; by that it's possible to configure a
project in that way that it can fix the problem automatically in case
of occurrence.

Of course, the first two posibilities require that the variable won't stay invalid
forever.

3

3.13.3. The ordinary oscilloscope for testing

This oscilloscope is designed for a swift check of a signal shape. It is to be placed
like a function block and it displays immediately the connected signal. The input
is of datatype "untyped". Arrays can not be connected to the oscilloscope (see
also next chapter). There are no scales in order to survey the signal.

Simple oscilloscope Fig. 53

3.13.4. The u

These t

3.13.4

 M ltichannel Oscilloscope and Logical Analyzer

wo function blocks are very similar to each other and base on the same

) is a tool for display of up to 32 boolean
nals simultaneously (only datatype BOOL is allowed).

.1.

g as it is not enabled. So, it is possible to place and connect
several oscilloscope-function blocks in the diagram without requiring excessive
computing time for display except for the one which is activated. Only one in-
stance of the oscilloscope (or logical analyzer) can be displayed at a time. Switch-
ing over to another display is easily done by pressing the tabs at the bottom of
the display window.

principle but they are used for different purposes.

The logical analyzer (Ch32Analyzer
sig

 The multichannel oscilloscope is used for display of up to four signals in or-
der to survey the signals, to optimize closed loop controls or to represent
arrays (vectors, e.g. a FFT-result).

Usage

One of these function blocks should be placed in the function block diagram.
Connected to the signals, it can be considered like a probe without display. Unlike
the ordinary oscilloscope these function blocks use no extra processor time for
graphic display as lon

 © iba AG 2009

ibaLogic Manual Page 3-37

Fig. 54 Multichannel oscilloscope

The number of (input) channels can be adjusted after doubleclick on the function
block.

Adjusting channels for multichannel oscilFig. 55 loscope

ional channel means one binary input
of the multi-channel-oscilloscope every additional input

nput (ch), always together with a scaling input (x Unit). By

 is continuously refreshed. "trig-
er"-input = FALSE freezes the display.

Scaling the inputs

 See also box Dynamic scaling on page 3-42

3.13.4.2. peration

In case of the logic analyzer each addit
(BOOL) more. In case
means one signal i
means of the latter input type, the display of each channel can be scaled indi-
vidually. If a scaling input is not connected the corresponding channel will be
scaled like the previous channel.

As long as the "trigger"-input is TRUE, the display
g

3

The default value for each scaling input is 1. Every value (e.g. real value or array
element) is scaled by this quantity. For array elements this might be more com-
plex if another base than the basic cycle time is needed.

O

In order to open the display select the function block (Ch4Oscilloscope or
Ch32Analyzer), make a right mouseclick and choose Show Multi-Channel-
Oscilloscope in the context menu or just click on the toolbar button .

Use the same commands to show the logical analyzer display.

 © iba AG 2009

Page 3-38 Manual ibaLogic

3

erational concept resembles the one of ibaAna-

l name

usekey depressed when drawing a

options and settings are offered in the con-
text menu concerning the display of signals.

with the context menus of X- and Y-axis.

Autoscale function may be helpful when a signal is not visible because
it's out of scale.

The user interface and the operation of the oscilloscope has been improved since
ibaLogic version 3.86. The new op
lyzer which is already well known by many users.

Different coloring of the curves, continuous compressing and stretching of the X-
and Y-scales as well as the shifting of signals, respectively the combination of
several signals in one signal strip and finally the measuring of values by means of
rulers are available features.

Context menus are available in the areas of X-axis, Y-axis, graph and signa
for the corresponding settings.

Zooming is possible by holding the left mo
frame in the graph. The command Autoscale in the context menu of a graph
zooms out completely. To open the context menu just make a right mouseclick in
the graph of the oscilloscope. Some

A zooming in steps is possible

The X- and Y-axis may be shifted when pointing on the scales, holding the
mousekey depressed and move the mouse.

Using the

Fig. 56 Multichannel oscilloscope, autoscale

be halted for
that.

A simple measurement of the graphs is provided by two markers which can be
activated via the context menu. The refreshing of the graph must

Fig. 57 Multichannel oscilloscope, stop refreshing

 © iba AG 2009

ibaLogic Manual Page 3-39

3

In order to see the values you should select Display marker tables in the context
menu. A table with the Y-values of all displayed graphs related to the X-position
of the markers and their differences will open below the graphs.

Fig. 58 Multichannel oscilloscope, rulers and data table

Each channel has its own graph if more than one channel of the multichannel os-
wn X-axis and –scale (corresdonding to in-cilloscope is used. Each graph has its o

put xUnit).

Fig. 59 Multichannel oscilloscope, multiple channels

The markers will be visible in all graphs after choosing Show markers for all
strips in the context menu. They may be moved indepently. If you like to have
them all in the same position then choose a pair of markers in one strip as a ref-
erence pair. After the markers have been positioned open the context menu in
the same strip and select Apply markers to all strips.

 © iba AG 2009

Page 3-40 Manual ibaLogic

Finally, several signals may be displayed together in one signal strip, just like in
ibaAnalyzer. Place the mouse cursor on a signal name until it changes its shape
(little waveline).

Fig. 60 Multichannel oscilloscope, move signal

mousekey depressed) to the target strip where the signal
should be displayed.

Drop the signal somewhere in the strip: the signal gets its own Y-axis.

 arrow appears:
the signal is assigned to the same Y-axis as the existing signal.

Then drag the signal (

Drop the signal close to another signal name, as soon as a little

Fig. 61 Multichannel oscilloscope, gather signals

t colors by
Auto-color in the context menu on the signal names in the strip.

For a better distinction of the different curves paint them in differen

Fig. 62 Multichannel oscilloscope, automatic color

3

Now you can measure the signals by means of the markers.

The logical analyzer works in the same way, but there is no Y-axis because the
values of the digtal signals can only vary between TRUE (1) and FALSE (0).

Fig. 63 Multichannel oscilloscope, CH32Analyzer

 © iba AG 2009

ibaLogic Manual Page 3-41

3

3.13.4.3.
block

The junc-
tion input channel of

s and the frequency
axis

Fun

Sample application for multichannel oscilloscope and rfft function

 following example shows how to use a multichannel oscilloscope in con
 with a rfft function block. Please note that there is an

ARRAY-type and that the scaling (xUnit) of both the time axi
 (FFT) as well is evaluated dynamically.

ction block diagram

Fig. 64 Multichannel oscilloscope and rfft, example

Explanation

1 A composite signal is created by adding four signals with different fre-
quencies, which are generated by ibaLogic's generators. The four single
singnals are connected to a "probe" of the multichannel oscilloscope.
The units of the X-axes (xUnit) have the default value 1.

2 The composite signal is the input of the function block
"FB_Collect_1024" which had been created with Structured Text. The
purpose of this function block is to transform the time-continuous input
signal into an output which is an one-dimensional array with 1024 cells
(Time_Signal_1024). In the same time the xUnits for time- and fre-
quency-axes are evaluated.
Refer to the box Dynamic scaling below.
The latter values are connected with the inputs xUnit1 and xUnit2 of
another "probe" of the multichannel oscilloscope (FFT_1024).
Finally, the function block generates a boolean trigger signal which is
set TRUE for one cycle, whenever the the array has been filled (every
1024 cycles).

 © iba AG 2009

Page 3-42 Manual ibaLogic

3 The signal Time_Signal_1024 is then connected to the input of a rfft
function block. Everytime the trigger signal is TRUE the rfft takes in the
array which contains the amplitude values of the composite signal
(1024 samples). By means of the FFT function the frequency spectrum
of the composite signal is evaluated and written the output which is an
array again but consisting of 512 cells and containing the frequency
amplitudes. Each cell (index) of the output array corresponds to one
frequency. The first cell (index = 0) corresponds to the constant como-
nent of the input signal (f = 0 Hz). Every following index corresponds to
a higher frequency which is equal to the one before incremented by
xUnit_FreqSignal. If, for example, xUnit_FreqSignal = 0.0978 it's possi-
ble to describe a frequency range from 0 to 50 Hz (511 * 0.0978).

3

4 The function block fb_const_compo_1024 eliminates the constant com-
ponent by writing 0.0 into the first cell of the array resulting from the
FFT, everytime the trigger is TRUE.

The display of the multichannel oscilloscope (probe FFT_1024) looks as follows:

Fig. 65 Multichannel oscilloscope and rfft, result view

The upper strip shows a time-based graph of the composite signal consisting of
1024 samples.

The lower strip shows the resulting FFT graph which shows significant peaks at
frequencies 1 Hz, 5 Hz, 10 Hz and 25 Hz which correspond exactly to the four
generator frequencies.

Dynamic scaling

The XUnit of the time axis in the example above corresponds to the task cycle
time (10 ms = 0.01 s). The XUnit of the frequency axis for the FFT-
representation is the result of the computation of number of samples and time
distance between the samples (XUnit time), considering the sampling theorema.

()()2/10242*_

1
_

TimeSignalxUnit
FreqSignalxUnit =

In the multichannel oscilloscope the XUnit of the frequency axis is the scale
index of one sample in the FFT-result array (output of the rfft function block),
i.e. the distance on scale (in Hz) between two FFT-results.

IbaLogic should run in signal manager mode for a proper FFT-calculation.

 © iba AG 2009

ibaLogic Manual Page 3-43

3.14 Save the project against unintended changes

In the menu bar you'll find a button with the key-icon . This command is a
mean to lock the online layer, i.e. to prevent modifications of the project. It is still
possible to navigate through the function block diagram and to open macro
blocks in order to view.

If the key-button is pressed, then ...

3

 all editing functions are switched off

 the usual Windows functions, such as collapse, expand or close windows
are disabled.

 to save, to read or to exit a program is not possible.

 the hardware settings are read-only.

If the key-button is pressed again, the editing function is unlocked again (see also
next section).

3.15 Password protection and other protecting measures
A project can be protected by a password. If the password protection mode is
enabled, a password is required in order to lock and unlock the layer with the
key-button .

Fig. 66 Activate password protection

If the checkbox "Protect Creation of Hot Swap Layer" is enabled a Hot-Swap-Layer
can not be opened, too.

 © iba AG 2009

Page 3-44 Manual ibaLogic

3

3.16 The Hot-Swap layer
One of ibaLogic's unique features is the occasion to modify a layout during online
operation without affecting the process. The modifications are to be applied
(swapped) later whenever it is suitable. This is made possible by the use of a so
called Hot-Swap layer, which is in fact a kind of workbench, independent from
the running layout. Particularly modifications which would break up an existing
network or which would shortly delete connection lines, e.g. when inserting a
new function block between two others. The Hot-Swap-Layer is a crucial feature
particularly for applications in continuous processing lines, like in paper produc-
tion.

If created over the menu HotSwap Create or the command button the
Hot-Swap layer is an exact copy of the online program. While the online layer is
indicated by a purple background color, the Hot-Swap layer is grey.

The Hot-Swap layer can be modidfied and tested (evaluated) like a usual layer.
But the Hot-Swap layer won't be set online, i.e. the modification will be compiled
and evaluated but it won't affect the outputs. Of course, the real process inputs
are used for evaluation.

The Hot-Swap-Layer will not become the online layer until it is activated by the
user with menu HotSwap Apply to Online Layer. The switch-over will be
done smooth and correctly in terms of cycle and evaluation chronology.

Create Hot-Swap layer Fig. 67

le to switch back and forth between Hot-Swap and Online
layer by pressing the button
At any time it is possib

.

The menu command HotSwap Close will dispose all modifications if not
stored as suggested.

nception of data handling and memor3.16.1. Co y in Hot-Swap

ring switch-over.

blocks to the online layer while keeping the other information un-
hanged.

PC input and output connectors (OTC) will not

When the Hot-Swap layer is active, it has to be ensured that no operation via OPC
gets lost. Also, locally stored information of function blocks have to be kept in
memory du

The method of ibaLogic ensures this by adding only the information of the new
function
c

O be evaluated in the Hot-Swap
.

layer

 © iba AG 2009

ibaLogic Manual Page 3-45

3.17 Printing a project

3

ibaLogic offers a variety of printer control functions which can be preset. Gener-
ally, the WYSIWYG-method (What You See Is What You Get) applies.

3.17.1. Setting the page size for a project

Basically, size and orientation of printed pages should be adjusted at the begin-
ning of engineering a project. This is to avoid changes of print format in the fu-
ture, and thus, additional work.

By using the menu File Page Setup... the window as
shown on left side will open.

This is the place to make the print settings for the entire
project.

 It is recommended to use format A4 landscape or lar-
ger. Other formats, e.g. letter, are also available as tem-
plates.

According to these settings, the pages are marked in the
function block diagram by a dotted line.

The margins are either I/O resource margins (for pages at
the far right or at the far left) or dotted lines in case to
devide two pages horizontally or vertically.

 Never place a function block on a borderline because
 could be cut when printed!

it

en
tion line over a page border.

ee also chapter 3.9.2)

3.17.2. Ins

ards in order to meet the usual requirements from technical

operties or by a right mouseclick on an
empty place in the page (Edit menu)

Left, you see such a borderline between two pages.

In order to keep the printout clear it is recommended to use
IntraPage-connectors (IPC) if vertical connection lines cross a
page border. With IPCs it's easier to track a signal. With ver-
sion 3.80 of ibaLogic IPCs are created automatically wh
drawing a vertical connec

(s

cription and layout of pages

Inscription and layout of the printed pages are designed in compliance with in-
ternational stand
documentation.

Every printed page shows references to creator and date of creation (both ap-
plied automatically at first page creation, taken from the general file settings),
change notes and page description (title). These properties can be set and edited
by using menu Edit Page Page pr

 © iba AG 2009

Page 3-46 Manual ibaLogic

The following dialog window will open:

The example (left) shows the tree structure of the
layout.
The field in the upper middle part of the window
shows the change history. Change notes have to be
entered in the input field below. Date of creation and
initials of the creator are written automatically at the
time of page generation but they can be entered ma-
nually as well.

The short sign of the creator will be taken by default
from the settings, made unter menu File Settings

Edit Settings.

In the lower field the page description (title) should
be entered.

The coordinates of the page are indicated in the up-
per right corner.

When the data input is completed press the "Apply.."-
button in order to save the inputs.

3

Note: Depending on the position of the highlighted bar in the tree structure, i.e.
whether it marks a page or a task, the settings of the page properties apply to a
single page or to all pages in the task. If only one page is selected, the check boxes
"Apply Selection" are hidden. If a task is selected then the check boxes are available
in order to control which information should be applied to all pages.

A1 A2 ...

B1 B2 ...

The page coordinates (i.e. page numbers) refer to the following matrix:

Letters refer to rows and numbers refer to columns.

...

3.17.3. Printer control settings

The subject of printing can be specified in order to avoid a waste of time and ma-
terial.

A printout can cover an entire layout or parts of it. (Print range)

Layer refers to the entire Layout (all tasks).

Current Window refers to the current selected task.

Selected FB refers to a FB or group of FBs which are selected.

Furthermore, there is a selection of objects to be printed. The
option "recursively" e.g. will lead to a printout of the contents of
every macrotype which is used in the layout, once per task.

Additional information can be added to the printout. The op-
tion "FB Structured Text" will lead to a printout of the code of
function blocks which are written in Structured Text.

"Large font" will promt the printer to use a larger font. It de-
pends on the paper size which font is the better choice.

The option "Table of contents" will always add a coverpage and
a table of contents with reference to the selected range and ob-
jects.

 © iba AG 2009

ibaLogic Manual Page 3-47

Please refer to the following table for some examples of frequent printout re-
quests.

3

Printing.... Layer Current
Window

Selected
FB

Task Macro Function
Block

recursively Header FB ST Graphic

complete layout with
all tasks, Task parameters, Task
as ST and graphical FBD but
no internal macro information
and no ST code of FBs

as above but with internal
macro information (graphic)
as above and addtionally ST
code of local FBs
only the graphical FBD of the
currently selected task but no in-
ternal macro information
only parameters of selected FBs
but no ST code

Table 8 Combinations of print settings

3.17.4. Adding your corporate logo on the printed pages

A specific graphic or picture can be placed on the cover page of a layout print.
The corporate logo will appear on every page in the footer. With its first start,
ibaLogic generates the files ibaLogo.bmp and ibaTitle.jpg and stores them in the
folder ...\configuration. This is done even when the files are not there.

If you wish to include your own corporate logo (ibaLogo.bmp) and / or cover pic-
ture (ibaTitle.jpg) just replace these files by those with your logo, resp. picture,
but using the same name and the same format.

The scaling of the logo, resp. picture, is done automatically according to the
available space when printing.

3.17.5. Adding your corporate copyright note

A specific copyright note can be placed on every page. Like for the logo or the
picture, you have to modify a standard file which is named ibaCopy.txt. This file is
also stored in the folder \configuration and it may contain any text. The default
setting is "Copyright © 2001". You may use any ASCII-editor to edit this text.

3.17.6. Printed pages

The following picture shows a typical page of a layout print with its special fields
and their source of information.

 © iba AG 2009

Page 3-48 Manual ibaLogic

3

Fig. 68 Printed page, example

 © iba AG 2009

ibaLogic Manual Page 4-1

4

4 Functions and function blocks

ibaLogic’s functions and function blocks are arranged in seven main groups in
order to keep it clear and easy to handle. To get to the functions list as shown be-
low, just click the „Functions“-tab in the resource area.

ibaLogic function block library

The seven main groups of functions and function blocks
are:

• Basic Functions

• Basic FBs

• Global Variables

• Global FBs and Macros

• Global DLLs

• Local FBs and Macros

• Local DLLs

Functions and function blocks which are recommended in
accordance to the IEC 61131-3 standard are marked with
a green icon:

Additional functions and function blocks which are pro-
vided by ibaLogic because they are useful and helpful are
marked with a yellow icon:

 © iba AG 2009

Page 4-2 Manual ibaLogic

4.1 Basic functions

4.1.1. Arithmetic functions

Overview of "Basic Functions", "arithmetic"

• acos cosine arc of arg

• asin sine arc of arg

• atan tangent arc of arg

• atan2 tangent arc of arg1 over arg2

• cos cosine of arg

• cosh cosine hyperbolic of arg

• exp natural exponential e** of arg

• fabs absolute value of arg (REAL)

• fmod floating point remainder of arg1 over
arg2 (REAL)

• ln natural logarithm of arg

• log logarithm base 10 of arg

• expt exponentiation arg1 ** arg2

• sin sine of arg

• sinh sine hyperbolic of arg

• tan tangent of arg

• tanh tangent hyperbolic of arg

• sqrt square root of arg

• frand pseudo random number in the range
from 0 to arg

• iabs absolute value of arg (INTEGER)

• add addition of arg1 plus arg2

• mul multiplication of arg1 by arg2

• sub subtraction of arg1 minus arg2

• div division of arg1 by arg2

• mod remainder of devision arg1/arg2

(arg = argument)

4

 © iba AG 2009

ibaLogic Manual Page 4-3

4

No. Source
Type

Arithmetic Functions
Symbol

Target
Type

Description, Example

1 LREAL

LREAL

acos: cosine arc of < arg >

Result:= acos(arg);
Examples: 1.57079= acos(0.0);

 3.14159= acos(-1.0);

2
LREAL

LREAL

asin: sine arc of < arg >

Result:= asin(arg);
Examples: -1.57079= asin(-1.0);

 1.57079= asin(+1.0);

3
LREAL

LREAL

atan: tangent arc of < arg >

Result:= atan(arg);
Examples: 1.0000= atan(π/2.0);

 1.2626= atan(π);

4 LREAL
LREAL

LREAL

atan2: tangent arc of < arg1 > over
<arg2>

Result:= atan2(arg1,arg2);
E

xamples: 1.1071= atan2(π,π/2.0);

5
LREAL

LREAL

cos: cosine of < arg >

Result:= cos(arg);
Examples: -1.0000= cos(π);

 +1.0000= cos(2.0*π);

6
LREAL

LREAL

cosh: cosine hyperbolic of < arg >

Result:= cosh(arg);
Examples: +27.3082= cosh(4.0);

 +201.7156= cosh(-6.0);

7
LREAL

LREAL

exp: natural exponential of < arg >

Result:= exp(arg);
Examples: +2.71828= exp(1.0);

 +0.13533= exp(-2.0);

8
LREAL

LREAL

fabs: absolute value of < arg >

Result:= fabs(arg);
Examples: +4.06= fabs(-4.06);

 +3.89= fabs(+3.89);

9 LREAL
LREAL

LREAL

fmod: floating point remainder of < arg1 >
over <arg2>

Result:= fmod(arg);
Examples:
 +1.6789=fmod(5.6789,2.0);

+1.862= fmod(+3.862,2.0);

 © iba AG 2009

Page 4-4 Manual ibaLogic

4

No. Source
Type

Arithmetic Functions
Symbol

Target
Type

Description, Example

10
LREAL

LREAL

ln: natural logarithm < arg >

Result:= ln(arg);
Examples: +1.00= ln(2.71828);
 -4.00= ln(0.01831);

11
LREAL

LREAL

log: Logarithm base 10 of < arg >

Result:= log(arg);
Examples: +1.00= log(10.0);
 -4.00= log(0.0001);

12 LREAL
any no.

LREAL

expt: exponentiation < arg1 >**<arg2>

Result:= expt(arg1;arg2);
Examples: +125.0= expt(5.0,3.0);
 +4.00= expt(16.0,0.5);

13
LREAL

LREAL

sin: sine of < arg >

Result:= sin(arg);
Examples: +1.00= sin(π/2.0);
 -0.8414= sin(-1.00);

14
LREAL

LREAL

sinh: sine hyperbolic of < arg >

Result:= sinh(arg);
Examples: -2.3013= sinh(-π/2.0);
 +2.3013= sinh(+π/2.0);

15
LREAL

LREAL

tan: tangent arc of < arg >

Result:= tan(arg);
Examples: +1.00= tan(+π/4.0);
 -1.00= tan(-π/4.0);

16
LREAL

LREAL

tanh: tangent hyperbolic of < arg >

Result:= tanh(arg);
Examples: +0.76159= tanh(1.00);
 -0.99627= tanh(-π);

17
LREAL

LREAL

sqrt: square root of < arg >

Result:= sqrt(arg);
Examples: +3.00= sqrt(9.00);
 +1.4142= sqrt(2.00);

18
LREAL

LREAL

frand: generates a pseudo random number
in the range from 0 to < arg >

Result:= frand(arg);
Examples: +0.07116= frand(1.00);
 +0.92457= frand(1.00);

 © iba AG 2009

ibaLogic Manual Page 4-5

4

No. Source
Type

Arithmetic Functions
Symbol

Target
Type

Description, Example

19
DINT/INT

INT/DINT

iabs: Absolute value of < arg > (INT / DINT)

Result:= iabs(arg);
Examples: +822= iabs(-822);
 +342= iabs(+342);

20 any no.
any no.

any no.

add: addition of arguments arg1 + arg2

Result:= add(arg1,arg2);
Examples: -1404= add(-702,-702);
 +5.27= add(5.00,0.27);

21 any no.
any no.

any no.

mul: multiplication of arguments arg1 *
arg2

Result:= mul(arg1,arg2);
Examples: 492804= mul(-702,-702);
 +1.350= mul(5.00,0.27);

22 any no.
any no.

any no.

sub: subtraction of arguments arg1 - arg2

Result:= sub(arg1,arg2);
Examples: -708= sub(-702,6.04);
 +4.73= sub(5.00,0.27);

23 any no.
any no.

any no.

div: division of arguments arg1/arg2

Result:= div(arg1,arg2);
Examples: -234= div(-702,3.26);
 +18.51= div(5.00,0.27);

24 INT/DINT
INT/DINT

INT/DINT

mod: remainder of division (Modulo)
arg1/arg2

Result:= mod(arg1,arg2);
Examples: -1= mod(-26,5);
 +4= mod(326,7);

Remark:
Functions in accordance with IEC are marked green, additional functions, provided by iba are marked
yellow
LREAL FABS(ARG); absolute value of LREAL-numeral arg (IEC-functionname is "ABS")
DINT IABS(ARG); absolute value of DINT-numeral (IEC-functionname ist "ABS")

 © iba AG 2009

Page 4-6 Manual ibaLogic

4.1.2. Type conversion

Overview "Basic Functions, Type Conversion"
There are the following groups of converting func-
tion blocks available:

• Convert BOOL

• Convert INT

• Convert DINT

• Convert UDINT

• Convert DWORD

• Convert REAL

• Convert LREAL

• Convert TIME

• Limiting converter

• Convert data structure

4

4.1.2.1.
If variables and function blocks are to be connected in the program, ibaLogic

e
in ved, usually a converter function is required and ibaLogic offers to enter one.

h

 o STRING,

 the function de-

 put value is coverted in "FALSE" if the input value

 nd DWORD conversions are created with a copy of the cur-

 ns are created with a copy of the current 4-byte

 AL/LREAL in DINT/UDINT is done by a numeric compu-
.

 REAL to DINT without rounding.

Rules for conversion

checks the compatibility of data types automatically. If different data types ar
vol

Furt ermore, the following rules for conversion apply:

 All signed integer operations are computed with 32-bit DINT accuracy.

If required, non-STRING values will be automatically converted int
except data of type ARRAY.

Standard functions are used for conversion. The name of
rives from <source type>_to_<target type> (see examples).

For target type BOOL the in
is 0, 0.0, 16#0 or T#0ms. Else it's converted in "TRUE".

DINT, UDINT a
rent 4-byte date (32 bit).

REAL to DWORD conversio
date (32 bit).

LREAL to DWORD conversions are created like REAL to DWORD, but LREAL
is first converted in REAL.

The conversion of RE
tation, assuming that the permissible limits of value range are not violated

 For data type "TIME" it is assumed that the input value "1" or "1.0" is given
in the unit "second"

A special function "TRUNC" converts L

 © iba AG 2009

ibaLogic Manual Page 4-7

4

e of a large value range should be converted into a
tatype with a smaller value range, a g converter is p (of-
red) by the omatica

nversions

 When a datatyp
da limitin rovided
fe program aut lly.

Table of co

 BOOL INT DINT UDINT
BOOL N/A bool_to_int bool_to_dint bool_ dint to_u

INT int_to_udint int_to_bool N/A int_to_dint

DINT dint_to_bool dint_to_int
limit_dint_to_int limit_dint_to_udint

N/A dint_to_udint

UDINT u
limit_udint_to_int limit_udint_to_dint

dint_to_bool udint_to_int udint_to_dint N/A

DWORD dword_to_bool dword_to_int dword_to_dint dword_to_udint

REAL
limit_real_to_int limit_real_to_dint limit_real_to_udint

real_to_bool real_to_int real_to_dint real_to_udint

LREAL lreal_to_bool lreal_to_int
limit_lreal_to_int

lreal_to_dint
limit_lreal_to_dint

trunc

lreal_to_udint
limit_lreal_to_udint

TIME time_to_bool time_to_int time_to_dint time_to_udint

STRING N/A N/A (atoi) N/A

Bits N/A bits_to_int N/A N/A

 DWORD REAL LREAL TIME
BOOL bool_to_dword bool_to_real bool_to_lreal bool_to_time

INT int_to_dword int_to_real int_to_lreal int_to_time

DINT dint_to_dword dint eal _to_r dint_to_lreal dint_to_time

UDINT udint_to_dword udint_to_real udint_to_lreal udint_to_time

DWORD dword_to_time N/A dword_to_real dword_to_lreal

REAL real_to_dword N/A real_to_lreal real_to_time

LREAL lreal_to_dword lreal_to_real
limit_lreal_to_real

lreal ime N/A _to_t

TIME time_to_dword time_to_real time_to_lreal N/A

STRING (atof, fFmt) N/A N/A ato N/A

Bits N/A N/A N/A N/A

 STRING bits char
BOOL bool_to_string N/A N/A

INT int_to_string int_ ts to_bi N/A

DINT dint_to_string N/A N/A

UDINT udint_to_string N/A N/A

DWORD dword_to_char dword_to_string N/A

REAL real_to_string N/A N/A

LREAL lreal_to_string N/A N/A

TIME time_to_string N/A N/A

STRING /A /A N N/A N

Bits /A /A N N/A N

For rget type "STRING" the input values are converted as follows: ta

DINT, UDINT, REAL or LREAL.

 Hex sequence of characters (e.g. "16#56AF3") for source type DWORD.

 Time sequence of characters (e.g. "T#5m35s200ms") for source type TIME

 "FALSE" or "TRUE", for source type BOOL

 Decimal row of characters (e.g. "-1234" or "123.456") for source types INT,

 © iba AG 2009

Page 4-8 Manual ibaLogic

4.1.2.2. General type converting functions

4

No. Source
Type

Type Conversion
Symbol

Target
Type

Description, Examples

1
BOOL

Example: bool_to_int

INT
DINT

UDINT
DWORD

REAL
LREAL
TIME

STRING

Convert BOOL

bool_to_int: TRUE => 1;
bool_to_dint: FALSE => 0;
bool_to_udint: TRUE => 1;
bool_to_dword: TRUE => 16#1;
bool_to_real: TRUE => 1.0;
bool_to_lreal: FALSE => 0.0;
bool_to_time: TRUE => T#1s;
bool_to_string: TRUE => TRUE;

2
INT

Example: int_to_dword

BOOL
DINT

UDINT
DWORD

REAL
LREAL
TIME

STRING

Convert INTEGER

int_to_bool: 446 => TRUE;
int_to_dint: 446 => 446;
int_to_udint: 446 => 446;
int_to_dword: 446 => 16#1BE;
int_to_real: 446 => 446.0;
int_to_lreal: 446 => 446.0;
int_to_time: 446 => T#7m26s;
int_to_string: 446 => 446;

3 DINT

Example: dint_to_time

BOOL
INT

UDINT
DWORD

REAL
LREAL
TIME

STRING

Convert Double INTEGER

dint_to_bool: 842 => TRUE;
dint_to_int: 842 => 842;
dint_to_udint: 842 => 842;
dint_to_dword: 842 => 16#34A;
dint_to_real: 842 => 842.0;
dint_to_lreal: 842 => 842.0;
dint_to_time: 842 => T#14m2s;
dint_to_string: 842 => 842;

4
UDINT

Example: udint_to_lreal

BOOL
INT

DINT
DWORD

REAL
LREAL
TIME

STRING

Convert Unsigned Double INTEGER

udint_to_bool: 761 => TRUE;
udint_to_int: 761 => 761;
udint_to_dint: 761 => 761;
udint_to_dword: 761 => 16#2F9;
udint_to_real: 761 => 761.0;
udint_to_lreal: 761 => 761.0;
udint_to_time: 761 => T#12m41s;
udint_to_string: 761 => 761;

5
DWORD

Example: dword_to_string

BOOL
INT

DINT
UDINT
REAL
LREAL
TIME

STRING

Convert Double WORD

dword_to_bool: 16#20 => TRUE;
dword_to_int: 16#20 => 32;
dword_to_dint: 16#20 => 32;
dword_to_udint: 16#20 => 32;
dword_to_real: 16#20 => 4.48416E-04;
dword_to_lreal: 16#20 => 4.48416E-04;
dword_to_time: 16#20 => T#3.2ms;
dword_to_string: 16#20 => 16#20;

 © iba AG 2009

ibaLogic Manual Page 4-9

4

No. Source
Type

Type Conversion
Symbol

Target
Type

Description, Examples

6
REAL

Example: real_to_udint

BOOL
INT

DINT
UDINT

DWORD
LREAL
TIME

STRING

Convert REAL

real_to_bool: -3.0 => TRUE;
real_to_int: -3.0 => -3;
real_to_dint: -3.0 => -3;
real_to_udint: -3.0 => 4294967294;
real_to_dword: -3.0 => 16#C0400000;
real_to_lreal: -3.0 => -3.0;
real_to_time: -3.0 => T#-3s;
real_to_string: -3.0 => -3.0;

7
LREAL

Example: trunc (LREAL zu
DINT ohne Runden)

BOOL
INT

DINT
UDINT

DWORD
REAL
TIME

STRING
TRUNC

Convert LREAL

lreal_to_bool: 0.0 => FALSE;
lreal_to_int: 504.3 => 504;
lreal_to_dint: 1.6 => 2;
lreal_to_udint: 504.3 => 504;
lreal_to_dword: 504.3 => 16#43FC2666;
lreal_to_real: 504.3 => 504.3;
lreal_to_time: 504.3 => T#8m24s300ms;
lreal_to_string: 504.3 => 504.3;
trunc: 1.6 => 1;

8
TIME

Example: time_to_lreal

BOOL
INT

DINT
UDINT

DWORD
REAL
LREAL

STRING

Convert TIME

time_to_bool: T#1m => TRUE;
time_to_int: T#1m => 60;
time_to_dint: T#-2s500ms => -3;
time_to_udint: T#1s => 1;
time_to_dword: T#1m => 16#927C0;
time_to_real: T#1m => 60.0;
time_to_lreal: T#10.5ms => 0.0104;
time_to_string: T#1m => T#1m;

9
BOOL

Example: bits_to_int

INT

Convert 16 bits to int

bits_to_int:
bit0 = TRUE
bit1 = FALSE
bit2 = TRUE
bit3 = FALSE
bit4 = TRUE
bit5 = TRUE
bit6 = TRUE
bit7 = FALSE = 10613
bit8 = TRUE
bit9 = FALSE
bit10 = FALSE
bit11 = TRUE
bit12 = FALSE
bit13 = TRUE
bit14 = FALSE
bit15 = FALSE

 © iba AG 2009

Page 4-10 Manual ibaLogic

4

No. Source
Type

Type Conversion
Symbol

Target
Type

Description, Examples

10
INT

Example: int_to_bits

BOOL

o 16 bitsConvert int t

int_to_bits:

10613 =

b

b

bit15 = FALSE

bit0 = TRUE
bit1 = FALSE
bit2 = TRUE

bit3 = FALSE
bit4 = TRUE
bit5 = TRUE
bit6 = TRUE

bit7 = FALSE
bit8 = TRUE

bit9 = FALSE
it10 = FALSE
bit11 = TRUE
it12 = FALSE
bit13 = TRUE

bit14 = FALSE

11
DWORD

Example: dword_to_char

STRING
(4 chars)

in 4 chars STRINGConvert DWORD

dword_to_char:

16#22645240 =
d
"

@
R

 © iba AG 2009

ibaLogic Manual Page 4-11

4.1.2.3. Limiting converters

4

Overview "Limiting Converter"

Limiting converters are function blocks of a special kind as
they convert one data type into another and limit the out-
put value to the max. / min. limits of the target data type if
they are exceeded by the input value.

• Limit UDINT to INT

• Limit DINT to INT

• Limit REAL to INT

• Limit LREAL to INT

• Limit DINT to UDINT

• Limit REAL to UDINT

• Limit LREAL to UDINT

• Limit UDINT to DINT

• Limit REAL to DINT

• Limit LREAL to DINT

• Limit LREAL to REAL

No. Source
Type

Limiting Converter
Symbol

Target
Type Description, Examples

1 UDINT

INT
Limit udint to int

limit_udint_to_int: 577000 => 32767;

2 DINT

INT
Limit dint to int

limit_dint_to_int: 577000 => 32767;

3 REAL INT
Limit real to int

limit_real_to_int: -216000 => -32768;

4 LREAL

INT
Limit lreal to int

limit_lreal_to_int: -216000 => -32768;

5 DINT UDINT
Limit dint to udint

limit_dint_to_udint: -216000 => 0;

6 REAL

UDINT

Limit real to udint

limit_real_to_udint: 1*E+12 =>
4294967295;

7 LREAL

UDINT
Limit lreal to udint

limit_lreal_to_udint: -1*E+12 => 0;

 © iba AG 2009

Page 4-12 Manual ibaLogic

4

No. Source
Type

Limiting Converter
Symbol

Target
Type

Description, Examples

8 UDINT DINT

Limit udint to dint

limit_udint_to_dint:2147483648
=>2147483647;

9 REAL

DINT
Limit real to dint

limit_real_to_dint: -2.2*E+09 => -2147483648;

10 LREAL

DINT
Limit lreal to dint

limit_lreal_to_dint: 2.2*E+09 => 2147483648;

11 LREAL REAL

Limit lreal to real

limit_lreal_to_real: 1*E+45 =>
 3.402823466*E+38

 © iba AG 2009

ibaLogic Manual Page 4-13

4.1.2.4. Scaling converters

4

No. Source
Type

Scaling Converters
Symbol

Target
Type Description, Examples

1

LREAL
LREAL

INT
LREAL

INT

INT

Scale_lreal_to_int

This function converts a LREAL value (e.g. a physical
quantity) into an INTEGER value (e.g. an analog
output) using a linear scaling.
scale_lreal_to_int: 4.6 => 15072
with –10.0 => -32768 and +10.0 => 32767

Implementation:
diff_x := x1 - x0;
if (diff_x <> 0.0)
then
 a := (y1 – y0) / diff_x;
 b := y0 - a * x0;
 dout := a * in + b;
 out := limit_lreal_to_int(dout);
else
 set_valid(out, FALSE);
end_if;

2

INT
INT

LREAL
INT

LREAL

LREAL

Scale_int_to_lreal

This function converts an INTEGER value (e.g. an
analog output) into a LREAL value (e.g. a physical
quantity) using a linear scaling.
scale_int_to_lreal: 16600 => 5.06615
mit -32768 =>–10.0 und 32767 => +10.0

Implementation:
diff_x := x1 - x0;
if (diff_x <> 0.0)
then
 a := (y1 - y0) / diff_x;
 b := y0 - a * x0;
 out = a * in + b;
else
 set_valid(out, FALSE);
end_if;

 © iba AG 2009

Page 4-14 Manual ibaLogic

4.1.2.5. Convert data structure

This function is used for exchange of data structures with external systems which
use more complex data structures than ibaLogic.

4

No. Source
Type

Data Structure Converters
Symbol

Target
Type Description, Examples

1

BOOL
ARRAY
ARRAY
ARRAY
ARRAY
UDINT

UNTYPED

STRING
ARRAY
ARRAY

UNTYPED

Convert_collect

This function is used for collecting several
data elements of various or same types
(sourceX) and putting them together in one
mutual data structure (target). Up to 58 in-
puts (source 0...57) can be processed. Each
source input is overloadable, i.e. different
data types may be connected, including 4-
dimensional arrays.
Input parameters:
trigger (BOOL): The function will only be
evaluated if trigger = TRUE.
swap_mode (Array of BOOL): If a bit of this
array is TRUE, the data element at the corre-
sponding source input will be swapped (de-
pending on target system).
offset (Array of UDINT): Byte offset per
source in the target structure (target);
if = 0 the data element will be written right
behind the previous one.
length (Array of UDINT): Byte length per
source in the target structure;
if = 0 the maximum length will be used.
mode_select (Array of DWORD): not used.
The index of these arrays (0...57) is assigned
to the source inputs.
start_offset (UDINT): Start address in the tar-
get structure, where the entries of the source
data should begin.
sourceX (untyped): Input data (X = 0...57)

Output parameters:
error_text (STRING): Status message
used_offset (Array of UDINT): Used offset per
source
used_length (Array of UDINT): Used length
per source
target (untyped): Target data structure

 © iba AG 2009

ibaLogic Manual Page 4-15

4

No. Source
Type

Data Structure Converters
Symbol

Target
Type Description, Examples

2

BOOL
ARRAY
ARRAY
ARRAY
ARRAY
UDINT

UNTYPED

STRING
ARRAY
ARRAY

UNTYPED

Convert_split

This function provides the inverse function of
Convert_collect and works accordingly.

An input data structure (source) can be split up
into various data elements of different or same
types.
For dismantling and reading the data structure
correctly the position, length and type of the
included data elements must be known.

Input parameters:
trigger (BOOL): The function will only be evalu-
ated if trigger = TRUE.
swap_mode (ARRAY of BOOL): If a bit of this
array is TRUE, the corresponding data element
will be swapped (depending on source sys-
tem).
offset (Array of UDINT): Byte offset per target
in the source structure (source);
if = 0 the data element can be found right be-
hind the prvious one.
length (Array of UDINT): Byte length per target
in the source structure;
if = 0 the maximum length will be read.
mode_select (Array of DWORD): not used
The index of these arrays (0...57) is assigned to
the target outputs.
start_offset (UDINT): Start address in the
source structure, where the above mentioned
target data had been entered.
source (untyped): Input data structure

Output parameters:
error_text (STRING): Status message
used_offset (Array of UDINT): Used offset per
target
used_length (Array of UDINT): Used length per
target
targetx (untyped): Target data

 © iba AG 2009

Page 4-16 Manual ibaLogic

4.1.3. String functions

4

No. Source
Type

String Functions
Symbol

Target
Type

Description, Examples

1 STRING

DINT

atoi: Converts STRING to INTEGER

Result:= atoi(string);
Examples: 12= atoi('12.34');
 1234= atoi('1234-Text');

2
STRING

REAL

atof: Converts STRING to REAL

Result:= atof(string);
Examples: 12.34= atof('12.34');
 12.34= atof('12.34-Text');

3 STRING
DINT

REAL

atofFmt: Converts STRING to REAL, beginning
at start index"idx"

Result:= atofFmt(string,idx);
Examples:
1.2= atofFmt('Vers=1.2',5);
54.32= atofFmt('a:=54.32',3);

4
UDINT

UTC-
Time-
String

UtcTimeToString: Converts a UTC-time con-
stant to a time-STRING

Result:= UtcTimeToString(arg);
Examples: '2001/08/10.11:05:49'= Utc-
TimeToString(997441549);
'1970/01/01.00:00:01'= UtcTimeTo-
String(1);

5
STRING

DINT

len: Length of a string

Result:= len(string);
Examples:
17= len('Dies ist ein Text');
4= len('Text');

6 STRING
DINT

STRING

left: Left part of a string, of a length of "l"
(chars)

Result:= left(string,l);
Examples: 'Dies is'= left('Dies ist
ein Text',7);
'Die'= left('Dies ist ein Text',3);

7 STRING
DINT

STRING

right: Right part of a string, of a length of "l"
(chars)

Result:= right(string,l);
Examples: 'in Text'= right('Dies ist
ein Text',7);
'ext'= right('Dies ist ein Text',3);

8 STRING
DINT
DINT

STRING

mid: Excerpt of a string of a length of "l"
(chars) beginning at position "p"

Result:= mid(string,l,p);
Examples: 'es is'= mid('Dies ist ein
Text',5,3);
'ein'= mid('Dies ist ein Text',3,10);

9 STRING
STRING

STRING
concat: concatenates two strings to one

Result:= concat(string1,string2);

 © iba AG 2009

ibaLogic Manual Page 4-17

4

No. Source
Type

String Functions
Symbol

Target
Type

Description, Examples

 Examples: 'Dies ist ein Text'= concat
 ('Dies ist','ein Text');
 'ABCD'= concat('AB','CD');

10 STRING
STRING
DINT

STRING

insert: insert string "in2" in string "in1" at po-
sition "p"

Result:=insert(string1,string2,p);
Examples: 'Dies ist ein Text'= insert
('Dies Text','ist ein ',5);
'ABCDE'= insert ('AE','BCD', 1);

11 STRING
DINT
DINT

STRING

delete: delete "l" chars of a string, beginnig at
position "p"

Result:= delete(string,l,p);
Examples: 'Dies Text'= delete('Dies
ist ein Text',8,5);
'BCD'= delete('ABCDE',3,1);

12
STRING
STRING
DINT
DINT

STRING

replace: replace "l" chars of string "in1" by
"in2" beginning at position "p"

Result:= replace(string1,string2,l,p);
Examples: 'Dieser Text'= repla-
ce('Dies ist ein Text', 'er', 8, 5);
'ABXE'= replace('ABCDE','X', 2,3);

13 STRING
STRING

DINT

find: find the first position where any char
of string "in2" matches chars in string "in1"

Result:= find(string1,string2);
Examples: 16= find('Dies ist ein
Text', 'x');
1= find('Dies ist ein Text', 'exD');

Remark:
Functions in accordance with IEC are marked green, additional functions, provided by iba are marked
yellow
Values of integer variables must not be signed negativ (<0)

 © iba AG 2009

Page 4-18 Manual ibaLogic

4.1.4. Bit-Shift functions and logical operations

4

No. Source
Type

Bit-Shift Functions
Symbol

Target
Type

Description, Examples

1 DWORD
DINT

DWORD

shl: Left shift of "in" by "n" MOD 32 bits,
zero-filled from right

Result:= shl(in,n);
Examples: 16#D90= shl(16#D9,4);
 16#180= shl(16#C,5);

2 DWORD
DINT

DWORD

shr: Right shift of "in" by "n" MOD 32 bits,
zero-filled from left

Result:= shr(in,n);
Examples: 16#C= shr(16#180,5);
 16#D9= shr(16#D90,4);

3 DWORD
DINT

DWORD

ror: right rotation of "in" by "n" MOD 32 bits

Result:= ror(in,n);
Examples:
16#F00000C2= ror(16#C2F,4);
16#F500000C= ror(16#CF5,8);

4 DWORD
DINT

DWORD

rol: left rotation of "in" by "n" MOD 32 bits

Result:= rol(in,n);
Examples:
16#F50000C2= rol (16#C2F50000,8);
16#45678123= rol (16#12345678,12);

5
Any bit

…
...

Any bit

DWORD/
BOOL

and: Logical AND-operation of input variables
(DWORD / BOOL)

Result:= and(in1,in2,...in_n);
Examples:16#80= and(16#180, 16#FFF0,
16#F0F0, 16#F0);
FALSE= and(TRUE,FALSE,TRUE);

6
Any bit

...
Any bit

DWORD/
BOOL

or: Logical OR-operation of input variables
(DWORD / BOOL)

Result:= or(in1,in2,...in_n);
Examples:TRUE=or(TRUE,FALSE,TRUE);
16#F1F3=or(16#180,16#F0F0,16#3);

7
Any bit

...
Any bit

DWORD/
BOOL

xor: Logical XOR-operation of input variables
(DWORD / BOOL)

Result:= xor(in1,in2,...in_n);
Examples: FALSE= xor(TRUE,TRUE);
16#F073=xor(16#180,16#F13);

8 Any bit

DWORD/
BOOL

not: Logical NOT-operation (negation) of input
variable (DWORD / BOOL)

Result:= not(in);
Examples: FALSE= not(TRUE);
16#FFFFFE7F=not(16#180);

Remark:
The number of inputs of function blocks "AND", "OR" and "XOR" is free to be altered. To alter the number of
inputs double click on the function block and change the "In"-variable under I/O-connectors by entering the
desired number oder clicking the arrows up / down.

 © iba AG 2009

ibaLogic Manual Page 4-19

4.1.5. Selection- and MIN- / MAX-functions

4

No. Source
Type

Selection Functions
Symbol

Target
Type

Description, Examples

1
BOOL

Any type
Any type

Any type

sel: selection (1 out of 2) with binary switch "G"

out:= in0, if G = FALSE [0];
out:= in1, if G = TRUE [1];
Result:= sel(G,in0,in1);

2

BOOL
Any type

.....

.....
Any type

Any type

mux: selection (1 out of n) by DINT-selector "K"

out:= in0, if K = 0;
out:= in1, if K = 1;
out:= in2, if K = 2;
out:= inn, if K = n;
out:= last value, if K >3;
Result:= mux(K,in0,in1,in2,in3);

3
Any type

.....
Any type

Any type

max: maximum value of inputs (1..n)

Result:= max(in1,in2,inn);
Examples:
16#1F= max(16#2,16#1F,16#C);
15.3 = max(12.3,7.8,15.3);

4
Any type

.....
Any type

Any type

min: minimum value of inputs (1..n)

Result:= min(in1,in2,inn);
Examples:
16#2= min(16#2,16#1F,16#C);
7.8 = min(15.3,7.8);

5
Any type
Any type
Any type

Any type

limit: linitation of input variable "in" between
"mn" (minimum) and "mx" (maximum)

Result:= limit(in,mn,mx);
Examples:
12.9 = limit(12.9,8.9,15.3);
15.3 = limit(17.6,8.9,15.3);
8.9 = limit(2.0,8.9,15.3);

Remark:
- "Any type": any elemental datatype BOOL/INT/DINT/UDINT/DWORD/REAL/LREAL/TIME/STRING
- The number of inputs of function blocks "mux", "max" and "min" is free to be altered. To alter the
number of inputs double click on the function block and change the "In"-variable under I/O-connectors
by entering the desired number oder clicking the arrows up / down.

 © iba AG 2009

Page 4-20 Manual ibaLogic

4.1.6. Comparison functions

4

No. Source
Type

Comparison Functions
Symbol

Target
Type

Description, Examples

1
Any type

…..
Any type

BOOL

gt: "greater than" (1 out of n)

TRUE, if in1 > in2 > in3;
FALSE, if in1 <= in2 <= in3
Result:= gt(in1,in2,in3);
Examples: TRUE= gt(15.3,12.9,8.9);
 FALSE= gt(15.3,6.8,8.9);

2
Any type

…..
Any type

BOOL

ge: "greater than or equal" (1 out of n)

TRUE, if in1 >= in2 >= in3;
FALSE, if in1 < in2 < in3
Result:= ge(in1,in2,in3);
Examples: TRUE= ge(15.3,15.3,8.9);
FALSE= ge(15.3,15.3,18.6);

3 Any type
Any type

BOOL

eq: "equal" (1 aus n)

TRUE, if in1 = in2 = in3;
FALSE, if in1 <> in2 <> in3
Result:= eq(in1,in2,in3);
Examples:
TRUE= eq('Text 1','Text 1');
FALSE= eq(15.3,15.3,18.6);

4
Any type

…..
Any type

BOOL

le: "less than or equal" (1 out of n)

TRUE, if in1 <= in2 <= in3;
FALSE, if in1 > in2 > in3
Result:= le(in1,in2,in3);
Examples: TRUE= le(15.3,22.8,28.7);
 FALSE= le(15.3,8.9,6.8);

5
Any type

…..
Any type

BOOL

lt: "less than" (1 out of n)

TRUE, if in1 < in2 < in3;
FALSE, if in1 >= in2 >= in3
Result:= lt(in1,in2,in3);
Examples:
TRUE= lt(15.3,22.8,28.7);
FALSE= lt(15.3,15.8,28.7);

6 Any type
Any type

BOOL

ne: "not equal" (1 aus 2)

TRUE, if in1 <> in2;
FALSE, if in1 = in2
Result:= ne(in1,in2);
Examples:
TRUE= ne('Text 1','Text 2');
FALSE= ne(15.3,15.3);

Remark:
- "Any type": any elemental datatype BOOL/INT/DINT/UDINT/DWORD/REAL/LREAL/TIME/STRING
- The number of inputs of function blocks "gt", "ge" "eq", "le" and "lt" is free to be altered. To alter the num-
ber of inputs double click on the function block and change the "In"-variable under I/O-connectors by en-
tering the desired number oder clicking the arrows up / down.

 © iba AG 2009

ibaLogic Manual Page 4-21

4.2 Basic FBs (basic function blocks)
Function blocks (FBs) have as many in- and output parameters as needed, which
are clearly defined. Furthermore, they can use internal variables, i.e. they have a
memory. A counter is a good example for a function block. The counter can be
used by one task or by several tasks as well and with a different data set in each
case.

4

Overview "Basic FBs", function blocks
iba's basic function blocks are devided into the fol-
lowing groups:

• Register/Multiplexer

• Edge Detection

• Counter

• Timer/Time functions

• Analytic

• Communication

• Signal Processing

• Debug- and helping function blocks
- Multi channel Oscilloscope
- Logical Analyzer
- Oscilloscope
- Manual Switch
- Manual Slider
- Show String Value
- Dat File Write
- Dat File Cleanup

4.2.1. Register / Multiplexer

Registers are storage elements. If the control input "set" is TRUE the value of input
"value" will be stored and forwarded to the output. Any alternation of the input
value will only be taken as long as "set" is TRUE. If the input "reset" is TRUE, the
output will be resetted. The control input "set" dominates "reset". (see timing-
diagram below)

 out

value

 set

 reset

time (ms)

Fig. 69 Timing diagram of register / multiplexer function blocks

 © iba AG 2009

Page 4-22 Manual ibaLogic

4.2.1.1. Register function blocks

4

No. Source
Type

Register Function Blocks
Symbol

Target
Type

Description, Examples

1
BOOL
BOOL
BOOL

BOOL

RegisterBool: Store data type BOOL

Result:= RegisterBool(value, set, re-
set);
Examples: see Timing-Diagramm

2
INT

BOOL
BOOL

INT

RegisterInt: Store data type INT

Result:= RegisterInt(value, set, re-
set);
Examples: see Timing-Diagramm

3
DINT
BOOL
BOOL

DINT

RegisterDInt: Store data type DINT

Result:= RegisterDInt (value, set,
reset);
Examples: see Timing-Diagramm

4
UDINT
BOOL
BOOL

UDINT

RegisterUDInt: Store data type UDINT

Result:= RegisterUDInt(value, set,
reset);
Examples: see Timing-Diagramm

5
DWORD

BOOL
BOOL

DWORD
RegisterDWord(value, set,

Examples: see Timing-Diagramm

RegisterDWord: Store data type DWORD

Result:=
reset);

6
BOOL

REAL
BOOL

REAL
,

Examples: see Timing-Diagramm

RegisterReal: Store data type REAL

Result:= RegisterReal (value, set
reset);

7 BOOL
BOOL

LREAL

LREAL
t,

mm

RegisterLReal: Store data type LREAL

Result:= RegisterLReal (value, se
reset);
Examples: see Timing-Diagra

8 BOOL
BOOL

TIME

TIME
,

reset);

RegisterTime: Store data type TIME

Result:= RegisterTime (value, set

Examples: see Timing-Diagramm

9 BOOL
BOOL

STRING

STRING
et,

reset);
Examples: see Timing-Diagramm

RegisterString: Store data type STRING

Result:= RegisterString (value, s

 © iba AG 2009

ibaLogic Manual Page 4-23

4.2.1.2. Shift-register and FIFO function blocks

4

No. Source
Type

Shift-register and FIFO
Function Blocks

Symbol

Target
Type

Description, Examples

1

BOOL

LREAL

LREAL
LREAL
LREAL
LREAL
LREAL
LREAL
LREAL
LREAL
BOOL

shiftRegister: Store data type REAL/LREAL in a
shift-register t0...t8

shift, if "set" = TRUE
t0:= value(t[n])current cycle
t1:= value(t[n-1]) last cycle
t2:= value(t[n-2])
.......
t8:= value(t[n-8])
with "n" = task cycle

2
DINT
LREAL
LREAL

LREAL

FirstInFirstOut: Store data type REAL/LREAL in a
FIFO-register

In each task cycle the FIFO-register
is shifted by one position. The input
"value", multiplied by "factor" is
stored in the shift-register.

Count: length of FIFO-registers
Value: input value
factor: multiplier for input "value"

3 BOOL
BOOL

BOOL

sr: RS-Flip-Flop (bistable set-dominant)

s1

r
q1

Truth table

E

Input Values Output
s1 r q1

0 0 q1

0 1 FALSE

1 0 TRUE

1 1 TRU

4 BOOL
BOOL

BOOL

rs: RS-Flip-Flop (bistable reset-dominant)

s1

r
q1

Truth table

Output
s1 r q1

0 0 q1

0 1 FALSE

1 0 TRUE

1 1 FALSE

Input Values

 © iba AG 2009

Page 4-24 Manual ibaLogic

4

No. Source
Type

Shift-register and FIFO
Function Blocks

Symbol

Target
Type

Description, Examples

5 DINT
Any type

Any type

Delay: Delay value forwarding

The output value "out" follows the in-
put value "value" with a delay of the
time equivalent to the number of cy-
cles, given at input "Count".

The function block has a limited mem-
ory capacity which applies when using

AY ('Value' and
'out'). If the number of array eöe-
the data type ARR

ments exceeeds 64 then the range of
delay values (65536) will be reduced
accordingly.

6 Any type

Any type

 value "in". This
nction block is used to define a

starting point for evaluation inside a
closed loop. The function block grants
that the evaluation of the loop always
starts at the same place in terms of
signal flow for the purpose of a clear
evaluation order.

move: Feedback register

The output value "out" is an exact
opy of the inputc
fu

 © iba AG 2009

ibaLogic Manual Page 4-25

4.2.2. Edge Detection

4

No. Source
Type

Edge Detection Function
Blocks
Symbol

Target
Type

Description, Examples

1 BOOL

BOOL

r_trig: Rising Edge Detector

If rising edge at input "clk"
(0->1)output "q" is set on TRUE for
one task cycle.
If the input signal clk is TRUE in the
moment of switching on the system, the
function block generates an impulse
(output q = TRUE for one task cycle).

 q

clk

time (ms)TA TA

2 BOOL

BOOL

f_trig: Falling Edge Detector

If falling edge at input "clk"
(1->0)output "q" is set on TRUE for
one task cycle.
If the input signal clk is FALSE in
the moment of switching on the system,
the function block generates an im-
pulse (output q = TRUE for one task
cycle).

 q

clk

time (ms)TA TA

 © iba AG 2009

Page 4-26 Manual ibaLogic

4.2.3. Counter

4

No. Source
Type

Counter Function Blocks
Symbol

Target
Type

Description, Examples

1
BOOL
BOOL
DINT

BOOL

DINT

ctu: Up-Counter

If input "cu" is TRUE the counter
value "cv" is incremented by one unit
per task cycle. When output "cv" has
matched the preset value "pv", the
output "q" is set TRUE. Input "r" =
TRUE resets the counter.

 q

cv

time (ms)

cu

 r

pv

 TA TA

2
BOOL
BOOL
DINT

BOOL

DINT

ctd: Down-Counter

If input "Id" is set TRUE the counter
value "cv" will be set to preset value
"pv". When input "cd" is set TRUE the
down-counting starts by decrement of
one unit per task cycle. When the
counter value "cv" is <= 0 the output
"q" is set TRUE.

 q

cv

time (ms)

cu

 ld

pv

 TA TA

0

 © iba AG 2009

ibaLogic Manual Page 4-27

4

No. Source
Type

Counter Function Blocks
Symbol

Target
Type

Description, Examples

3

BOOL
BOOL
BOOL
BOOL
DINT

BOOL

BOOL

DINT

ctud: Up-Down-Counter

If input "cu" is TRUE the counter
value "cv" is incremented by one unit
per task cycle. When output "cv" has
matched the preset value "pv", the
output "qu" is set TRUE.
(see sequence diagram "ctu"-FB)
If input "Id" is set TRUE the counter
value "cv" will be set to preset value
"pv". When input "cd" is set TRUE the
down-counting starts by decrement of
one unit per task cycle. When the
counter value "cv" is <= 0 the output
"qd" is set TRUE.
(see sequence diagram "ctd"-FB)
Input "r" = TRUE resets the counter.

4.2.4. Timer / Time functions (Zeitfunktionen)

No. Source
Type

Timer Function Blocks
Symbol

Target
Type Description, Examples

1 BOOL
TIME

BOOL
TIME

tp: Pulse Timer (pulse extention)

The rising edge at input "in" will
cause the output "q" to be set on
TRUE for the pulse time of "pt". As
long as the pulse time is running
output "q" cannot be resetted. Output
"et" shows the lapsed time.

 q

et

time (ms)

in

pt

pt ptpt

 © iba AG 2009

Page 4-28 Manual ibaLogic

4

No. Source
Type

Timer Function Blocks
Symbol

Target
Type

Description, Examples

2 BOOL
TIME

BOOL
TIME

ton: On-Delay

The rising edge at input "in" starts
the delay time counter for the time
"pt". After lapse of "pt" the output
"q" is set TRUE until input "in" is
FALSE. The output "q" will not be set
TRUE if the actual time of "in" being
TRUE is shorter than the delay time
"pt".
Output "et" shows the lapsed time.

 q

et

time (ms)

in

pt

pt ptpt

3 BOOL
TIME

BOOL
TIME

" starts
e delay time counter for the time

tput

tof: Off-Delay

If input "in" is TRUE, the output "q"
is set TRUE.
he falling edge at input "inT
th
"pt". After lapse of "pt" the ou
"q" is set FALSE. The output "q" will
remain unchanged if the actual time
of "in" being FALSE is shorter than

time "pt". the delay
Output "et" shows the lapsed time.

 q

et

time (ms)

in

pt

pt pt

 © iba AG 2009

ibaLogic Manual Page 4-29

4

Source
Type

Timer FunctioNo. n Blocks
Symbol

Target
Type

Description, Examples

4 UDINT

UDINT
DINT
DINT
DINT

tion UTC-time

This function block converts the in-
sec-

DINT
DINT
DINT

splitUtcTime: segmenta

put "tm" (given as UTC-time in
onds)to the output variables year,
month, day, hour, minute and second.
UTC-time is the number of seconds
lapsed since 1970-01-01, 00:00:00.
Examples:
tm= 1; 01.01.1970/00:00:01
tm= 2_592_000 31.01.1970/00:00:00
tm= 946_684_800 01.01.2000/00:00:00
equal to 30 years (60*60*24*365)
plus 7 leap days (60*60*24)

5

DINT
DINT
DINT
DINT
DINT
DINT
DINT

UDINT

ts year,

0

m

This function block generates the

akeUtcTime: generation of UTC-time

UTC-time based on the inpu
month, day, hour, minute and second
Examples:
01.01.2000/00:00:00 tm= 946_684_800
08.06.2000/12:00:00 tm= 960_462_00

6 UDINT UDINT

setUtcTime: Set UTC-time

This function block sets the UTC-
time.

BOOL

7 UDINT

UDINT
DINT
DINT
DINT
DINT
DINT
DINT
DINT

e

is function block converts the in-
m time

about
saving time (dst).

splitLocalTime: Splitting the local system tim

Th
put value 'tm' (local syste
given in seconds)into the output val-
ues year, month, day, hour, minute
and second plus the information
daylight

 © iba AG 2009

Page 4-30 Manual ibaLogic

4

4.2.5. ticAnaly Functions

No. Source
Type

Analytic Function Blocks
Symbol

Target
Type

Description, Examples

1 DINT
REAL

DINT
BOOL
REAL

sed as a base for aver-

t value

 for average
e "Full" is

 number of values to cum-
ulate is reached. Output value "Av-

mulated aver-

 during operation.

MovingAverage: Cummulated average

Input value "Count" sets a number of
values to be u
age calculation of inpu
"Value". Output value "Size" reflects
the number of values used
calculation. Output valu
set TRUE if
m
erage" returns the cum
age. Average calculation is done con-
tinuously. Input "Count" can be al-
tered

2
REAL
REAL
BOOL

REAL

Integral: Integrate value over time

Ou put value "out" is the integralt of
p ied by "factor"

e output.

In ut "value" multipl
over time.
"r set" = TRUE resets the

3
REA
REAL
BOOL

REAL

erivative: Derivate value over time D

L
Output value "out" is the derivate of
input "value" multiplied by "factor"
over time.
"reset" = TRUE resets the output.

4

LREAL
LREAL
LREAL
LREAL
LREAL
LREAL
LREAL
TIME
LREAL
TIME
BOOL
BOOL
BOOL
BOOL
BOOL
BOOL
BOOL

LREAL
LREAL
LREAL
LREAL
LREAL
BOOL
BOOL

PIDT1Control: PIDT1-controller block

Universal PIDT1-controller with several modes of
operation as P-, I-, PI-, PIDT1-controller.

Functions:

• Setting start value for integrator

• Holding current value of integrator

• Precontrol value wp

• Control limits ll (low) and lu (up)

• Proportional coefficient kp

• Reset time tn

• Control deviation reversible

• Indication of limit violation

• Indication of control deviation

• Indication of controller output value

For more information please refer to chapter
4.2.9

 © iba AG 2009

ibaLogic Manual Page 4-31

4

SNo. ource
Type

Target Analytic Function Blocks
Symbol Type

Description, Examples

5 LREAL
TIME LREAL

PT1: Delay function of 1st order

The input value 'x' is dynamically delayed by com-
putation with smothing time constant 't1'. The

put 'y'.

Implementation

result is copied on the out

:

t1_t0 := time_to_lreal(t1) /
 time_to_lreal(EvalDeltaTime);

y := 1.0 / (1.0 + t1_t0) *
 (x + t1_t0 * y_old);
y_old := y;

6

LREAL
LREAL
LREAL
LREAL
LREAL
LREAL
BOOL
BOOL
BOOL
BOOL

LREAL
AL
OL

BOOL
BOOL

LRE
BO

Ramp: Ramp function block

The ramp function block provides two different
ramps, manual and automatic mode of opera-
tion.

Functions:

• Reference value limitation ('ll' and 'lu')

• Going to new reference value via ramp

• Setting reference value

• Indication of limit violation

 please refer to chapter
4.2.9
For more information

 © iba AG 2009

Page 4-32 Manual ibaLogic

4

4.2.6. munication Functions

oup of function blocks is dedicated to the communication by serial inter-
face 3964R protocol (DUST) and TCP/IP.

Com

This gr

No. Source
Type

Communication Function
Blocks
Symbol

Target
Type

Description, Examples

1 BOOL

BOOL
BOOL
DINT
BOOL
BO
BO
BO

ly initialized. If a new telegram has
d ully the output "new_tel" is

 bytes. The er-

 outputs " E if the corre-

AK or BCC.

OL
OL
OL

BOOL

Recv_3964: Receiving a 3964R-telegram (admin-
istrativ function block)

This function block should always precede a
"Read_3964_xxx"-function block.

If input "receive" is TRUE the function block tries to
receive a telegram from the 3964R-driver. The
output "init_ok" is set TRUE if the 3964R-driver has
been proper
been receive successf
set TRUE. The output "tel_lentgh" returns the
length of the recceived telegram in
ror error..." are set TRU
sponding error occurred: timeout, synchroniza-
tion, telegram length (too long), N

2

BOOL

DINT

BOOL
BOOL
BOOL
BOOL
BOOL
BOOL
BOOL

inis-

 by

h

as

_done"
set
ffer

n, telegram length
 or collision.

Send_3964: Sending a 3964R-telegram (adm
trativ function block)

This function block should always be preceded
a "Write_3964_xxx"-function block.

If the input "send" is set TRUE, then the function
block tries to submit a telegram of the lengt
given at input "tel_length" to the 3964R-driver. The
output "init_ok" is set TRUE if the 3964R-driver h
been properly initialized. If the telegram was sub-
mitted successfully, then the output "send
is set TRUE. The error outputs "error..." are
TRUE if the corresponding error occured: bu

ll, timeout, synchronizatiofu
(too short)

 © iba AG 2009

ibaLogic Manual Page 4-33

4

Source
Type

Communication Function
Blocks
Symbol

Target
Type

No. Description, Examples

3

BOOL
DINT

Example: Read_3964_Int

BOOL
BOOL
BOOL

DINT DINT
DINT DINT
DINT DINT
DINT DINT

extraction of a maximum of eight integer values,

This function block should always be preceded by
ction block. If the input "read" is

4 bytes and Swap

nd 4-byte

t7" contain

_3964_Float, the

Read_3964_Int: Reading a 3964R-telegram and

beginning at offset

a "Recv_3964"-fun
set TRUE then the function block tries to read in-
teger data from the received telegram. The input
"offset" declares the offset for the integer data
range in the telegram. "number" defines the num-
ber of values to be read (1...8).

The input "ctype" is to be used for further specifi-
cation of the expected data type, e.g. if swapping
is required:

0 (default) 4 bytes

2 2 bytes

3 2 bytes and Swap

4 4 bytes

5

(The read- and send function blocks for INT-,
UINT and WORD data permit 2- a
types; the read- and send function blocks for
FLOAT only permit 4-byte type)

The output "init_ok" is set TRUE if the 3964R-
driver has been properly intialized. TRUE at out-
put "error_empty" shows that the receive-buffer
is empty and no data are available for reading.
Output "error_lenght" is set TRUE if the telegram
is too short. The outputs "int0"..."in
the extracted integer values.

For the function blocks Read_3964_Uint,
Read_3964_Word and Read
rules apply correspondingly.

DINT
DINT

4

BOOL
DINT DINT
DINT DINT
DINT DINT
DINT DINT
DINT DINT

DINT

Example: Write_3964_Int

BOOL

BOOL

ackaging of up to eight integer

r to send the

s

are given at the inputs "int0"..."int7" into a
e

ecification at "ctype". (For information about

The output "init_ok" is set TRUE if the 3964R-driver
as been properly initialized. The output "er-
r_length" is set TRUE if the telegram is too short

to contain the values.

For the function blocks Write_3964_Uint,
Write_3964_Word and Write_3964_Float, the rules
apply correspondingly.

Write_3964_Int: P
values into a 3964R-telegram

This function block should always precede a
"Send_3964"-function block in orde
data.

If the input "write" is set TRUE then the function
block tries to write the "number" of integer value
which
3964R-telegram considering the "offset" and th
type sp
"ctype" please<refer to description Read_3964_int
above.)

h
ro

 © iba AG 2009

Page 4-34 Manual ibaLogic

4

No. Source
Type

Communication Function
Blocks
Symbol

Target
Type

Description, Examples

5

BOOL
UDINT
BOOL

STRING
UDINT
BOOL
BOOL
BOOL
UDINT

untyped
BOOL
UDINT
BOOL
BOOL

DWORD
STRING

TCPIP_SendRecv: Sending and receiving data via TCP/IP

d This function block may be used instead of DLL-base
communication functions.

Input parameters:

Send_data: Data to be sent (data types String or Array)

send: Send command; every task cycle when this input is
TRUE, the function tries to send.

Send_length: Number of bytes to be sent. If = 0, either
the entire array or the connected string will be sent. If the
value exceeds the total array length the length will be lim-

a: Accepting new function block parameters if

 of the

1: Readbuffer will be delete after reading.

 block is activ on

de. If = TRUE

ength will be received.

la

ited to array length.

New_par
= TRUE.

Rem_st_Adr: Remote Station Address. IP-address
target PC which is the communication partner. Parameter
format: nnn.nnn.nnn.nnn. Value is only required when
the instance of the function block is activ on the TCP/IP
connection.

Port_number: Port-number of the connection

Mode:

Bit 0 = 0: Strings will terminate to a value of 0.

Bit 0 = 1: Strings will not terminate.

Bit 1 = 0: Readbuffer will not be deleted after reading.

Bit 1=

Active: This instance of the function
the TCP/IP-connection if = TRUE.

High_prio: High Priority Mode = TRUE, for fast TCPIP-
communication < 10 ms cycle time.

Recv_ok: Controls data flow on receiver-si
data reception in the task is possible.

Recv_length: Length of received messages (only in con-
junction with Use_recv_length)

Use_recv_length: If = TRUE, messages of length
Recv_L

Reset_ st_error: Reset error outputs

Output parameters:

Recv_data: Received data (data types String or Array)

Received: Status; If = TRUE, a new message has been
received in the current task cycle.

Recv_length: Number of received bytes

Send_buffer_filled: If = TRUE, a send trial failed be-
cause the first send buffer was still filled on first level.

Connected: If = TRUE, the co

untyped

BOOL
BOOL

nnection has been estab-
lished.

Last_error_code: Code of the error which occurred re-
cently.

Last_error_string: Text of the error which occurred re-
cently.

 © iba AG 2009

ibaLogic Manual Page 4-35

4

4.2.7. nal processing Sig

No. Source
Type

Signal Processing Function
Blocks
Symbol

Target
Type

Description, Examples

1
ARRAY
ARRAY
BOOL

ARRAY
REAL
DINT

Correlation: Correlation of one or two signals

This function block evaluates the cross-correlation
between two Signals or – if the signal level of one o
the input signals is too low – the auto-correlation o
one signal. Additional outputs are the maximum
correlation coefficient and the array index.

in1, in2, out: One-dimensional arrays with 2, 4,
16, 32, ...65536 elements, Startindex 0

The function block will only be evaluated if trigge
is TRUE.

f
f

8,

r

2 ARRAY
BOOL

ARRAY

sing the method of amplitude comparison this
function block evaluates the basic frequency and the
corresponding harmonis of input signal in. The basic
frequency can be found at index 0 in the output ar-
ray out, the harmonic at the indices 1...n.

in, out: One-dimensional REAL-Arrays with 2, 4, 8,
16, 32,...65536 elements, Startindex 0

The function block will only be evaluated if trigger is
TRUE.

Cursors: Basic frequency and harmonics

U

3 ARRAY
BOOL

ARRAY
REAL

Distortion: Grade of distortion

This function block evaluates the grade of distortion
(harmonic distortion) of an input signal in and the
total harmonic distortion (thd).

in, out: One-dimensional REAL-Arrays with 2, 4, 8,
16, 32,...65536 elements, Startindex 0

The function block will only be evaluated if trigger is
TRUE.

4 ARRAY
BOOL

ARRAY

rfft: Real Fast Fourier Transformation

This function block returns a single-sided fft result
(absolute value).

Input in should be of data type array, e.g. an array
of reals with dimension of 2n (64...32768 array in-
dexes). Output out is also an array of reals but with
dimension of 2(n-1) (e.g. 32...16384). Input trigger =
TRUE enables the FFT-calculation. If trigger is FALSE
the function block doesn't calculate and so won't
consume processor time.

 © iba AG 2009

Page 4-36 Manual ibaLogic

4

No. Source
Type

Signal Processing Function Target
Blocks
Symbol Type

Description, Examples

UNTYPED
STRING
BOOL

STRING

DigFilt: digital filter

connected to input in. Lowpass, highpass, band-

schebyscheff-, Ellip-

p
g, Hanning

f parameters and errors will be indicated
 text (used_filt_para, last_error_string).

.9

Digital filter for continuous or buffered signals

pass and bandstop filtertypes are available. Filter
implementation may either be IIR- (Infinite Im-
pulse Response) or FIR- (Finite Impulse Response
). As IIR-Filter Butterworth-, T
tic- and Invers Tschebyscheff characteristics are
available. As FIR-Filter the windowing ty es Rec-
tangle, Bartlett, Blackman, Hammin
and Kaiser are available.

tup oSe
as

For more information please refer to chapter 4.2

5

UNTYPED
BOOL

S

L

LREAL
BOOL

TRING

STRING
STRING
LREAL
LREAL
REAL

ARRAY
ARRAY
BOOL

 © iba AG 2009

ibaLogic Manual Page 4-37

4

4.2.8. Special and helpful basic FBs

No. Source
Type

Special Basic Function
Blocks
Symbol

Target
Type

Description, Examples

1

Any type

 pen display with tool bar button

Ch4Oscilloscope: Multichannel Oscilloscope

Function block to use like a probe. Scalable from
one up to four channels. TRUE at input trigger starts
the monitoring. Inputs xUnitn for x-scale, inputs chn
for signals to be monitored.

O or right
mouseclick on function block.

For more information please refer to chapter
3.13.4

BOOL
REAL

REAL

Any type
REAL

Any type
REAL

Any type

2

L

BOOL
REAL
BOO
BOOL
BOOL
BOOL
BOOL
BOOL
BOOL

Ch32 Logic Analyzer: Oscilloscope for boolean
ignals

m

s

Function block to use like a probe. Scalable fro
one up to 32 channels. TRUE at input trigger starts
the monitoring. Input xUnit for x-scale, inputs chn
for boolean signals to be monitored.

Open display with tool bar button or right
mouseclick on function block (multichannel oscillo-
scope)

For more information please refer to chapter
3.13.4

3 Any type
BOOL

REAL

Oscilloscope: ordinary oscilloscope

This function block monitors shape and trend of one
signal. Lower input (BOOL) on TRUE will enable con-
tinuous autoscale function. Output (REAL) shows
the last value.

Attention: Processing time consumption depends on
 diagram! size of representation in function block

The bigger the display the more time it needs!

4 BOOL

BOOL

ual simu-

ck (symbol). Out-
ut will be TRUE as long as mouse button is

pressed.

For switch-function use right mouseclick. Output
toggles with every click.

Input for alternativ switch control by a boolean sig-
nal. If input is TRUE (permanent or impulse) then
output of switch is TRUE (permanent, switching off
manually).

switch: pushbutton and switch

This function block is a good help for man
lation of boolean signals. For pushbutton-function
use left mouseclick on function blo
p

 © iba AG 2009

Page 4-38 Manual ibaLogic

4

No. Source
Type

Special Basic Function
Blocks
Symbol

Target
Type

Description, Examples

5 REAL
REAL

REAL DINT

slider: digital potentiometer

This function block returns any value in the range
given by minimum value (upper input) and maxi-
mum value (lower input)depending of the slider po-
sition. Resolution is 1000 steps. The slider position is
returned at the lower output (0...1000). Inputs are
set on 0 / 1 by default but they can have any value.

6 Any type STRING

showString: display of any value

This function block is helpful for display of any
value, particularly for long figures or strings. Inter-
prets input always as string. Output is of type
STRING.

7

DWORD
BOOL
DINT
BOOL
STRING
BOOL
BOOL
LREAL
STRING
STRING
BOOL
DWORD
STRING
BOOL
BOOL
Any type
Any type
Any type

DWORD

DINT

BOOL

DWORD

STRING

BOOL

BOOL

STRING

STRING

DatFileWrite: Creating and filling of *.dat-files

This function block is designed to open, to fill and
to close data files of iba's *.dat-type directly in the
ibaLogic layout. As usual the created data files can
be further processed and evaluated with ibaAnalyzer
or other tools, which are able to read the dat-
format.

Due to the function block's complex functionality
please refer to the following chapter 4.2.9 for de-
tailed information.

8

STRING
BOOL
UDINT
BOOL
BOOL
UDINT
BOOL
BOOL
BOOL

BOOL
UDINT
UDINT
DINT
STRING

DatFileCleanup: Clean up the harddisk

This function enables the ibaLogic application to
care out a cleanup-strategy in terms of old data files
on the harddisk. Depending on settings and criteria
(input parameters) similar to those in ibaPDA old
data files may be deleted or overwritten.

For more information please refer to chapter 4.2.9

9
Any type

BOOL

Any type

BOOL

Validate: Monitoring and setting valid sig-
nals

This function block monitors the validity of a con-
nected input signal.

Output isValid is TRUE if input in is valid. If input in
is invalid then the output out is invalid too and the
output isValid is FALSE. If input setValid is set TRUE
then output out is forced to valid, with the recent
value. By using this function block in a network of
recursive evaluations (loops) it's possible to prevent
an invalid deadlock of the evaluation. Just insert this
block in the loop and set the input setValid =TRUE.

 © iba AG 2009

ibaLogic Manual Page 4-39

4

4.2.9. Complex funktion blocks

4.2.9.1. PIDT1Control

Function and usage

Universal PIDT1-controller with several modes of operation as P-, I-, PI-, PIDT1-
controller.

Functions:

 Setting start value for integrator

 Holding current value of integrator

 Precontrol value wp

 Control limits ll (low) and lu (up)

 Proportional coefficient kp

 Reset time tn

 Control deviation reversible

 Indication of limit violation

 Indication of control deviation

 Indication of controller output value (P, I, DT1)

Connectors

Connector Data type Description

w LREAL Reference value

x LREAL Actual value

wp LREAL Precontrol value

ll LREAL lower limit

lu LREAL upper limit

sv LREAL Initial value

kp LREAL P-gain

tn TIME Reset time

kv LREAL D-gain

 © iba AG 2009

Page 4-40 Manual ibaLogic

 © iba AG 2009

4

Connector Data type Description

tl TIME D-time constant

en BOOL Controller release

inv BOOL Inversion of control deviation

en_p BOOL Enable P-controller mode

en_i BOOL Enable I-controller mode

set BOOL Set integrator

hi BOOL Hold integrator

en_d BOOL Enable D-controller

y LREAL Control value

ye LREAL Control deviation

yp LREAL Output value P-controller

yi LREAL Output value I-controller

yd LREAL Output value D-controller

ql BOOL lower limit reached

qu BOOL upper limit reached

cont'd. PIDT1

ibaLogic Manual Page 4-41

4

4.2.9.2. Ramp

Function and usage

The ramp function block provides two different ramps, manual and automatic
mode of operation.

Functions:

 Reference value limitatio

 Going to new reference

 Setting reference value

on iolat

Connectors

n ('ll' and 'lu')

value via ramp

 Indicati of limit v ion

Connector Data type Description

x LREAL Input value (reference value)

ll LREAL Lower limit

lu LR UpEAL per limit

sv LREAL Initial value

rm LREAL Manual ramp (10/s)

ra LREAL Automatic ramp (10/s)

cd BOOL De ramp control) scending ramp (manual

cu BOOL Ascending ramp (manual ramp control)

cf BO RaOL mp acc. to. input value (automatic ramp control)

set BOOL Set output value

y LREAL Ou

Ta e

r = used ramp

tput value; yn = yn-1 + Ta ∙ r ∙ 10

= task cycle tim

r LREAL Used ramp (1/s)

qe BOOL Output value = input value

ql BOOL lower limit reached

qu BOOL upper limit reached

 © iba AG 2009

Page 4-42 Manual ibaLogic

4

4.2.9.3. DigFilt - digital filtering of signals

Function and usage

This function blocks works like a digital filter for continuous or buffered signals.

Signals to be measured may be cleared of disturbing frequencies (noise or hum)
in order to improve the control quality of a connected open or closed-loop con-
trol. In conjunction with the rfft function block the frequencies which are in-
cluded in a signal may be detected and filtered out.

Connectors

Connector Data type Description

in untyped Input signal to be filtered; permissible data types: REAL
and one-dimensional ARRAY of REAL

trigger BOOL The function block will only be evaluated if trigger is
TRUE.

select STRING Selction of filter type; the input string must have the ex-
act spelling as follows (high- and low case sensitive):

LowPass....................for lowpass filter
HighPass...................for highpass filter
BandPass..................for bandpass filter
BandStop.................for bandstop filter

(Error message no. E00 in case of misspelling)

implementation STRING Selection of filter implementation; the input string
must have the exact spelling as follows (high- and low
case sensitive):

IIR.....(Infinite Impulse Response)
FIR....(Finite Impulse Response)

This input depends on the selection at input character-
istic. (see table below)
(Error message no. E01 in case of misspelling)

characteristic STRING Selection of the filter characteristic; the input string
must have the exact spelling as follows (high- and low
case sensitive):
Butterworth, Chebyshev, Elliptic or InvChebyshev (IIR)
Rectangular, Bartlett, Blackman, Hamming, Hanning
or Kaiser (FIR)

This input depends on the selection at input imple-
mentation. (see table below)

(Error message no. E01 in case of misspelling)

 © iba AG 2009

ibaLogic Manual Page 4-43

4

Connector Data type Description

frequency LREAL Corner- or main frequency of the filter, given in Hz

gain LREAL Attenuation (per decade or maximum), given in dB

q_factor LREAL Quality factor, ratio of main frequency and bandwidth
(for bandpass- and bandstop filters)

freqlist ARRAY[0..3]
of LREAL

List of filter frequencies

An array of up to four frequency values may be con-
nected to this input. The input signal will be filtered on
all of these frequencies. Each frequency may be filtered
with an individual attenuation. Thus, several frequencies
may be filtered from the input signal at the same time.

gainlist ARRAY[0..3]
of LREAL

List of attenuation values, corresponding to the list of
filter frequencies.

use_list_val BOOL Enable (=TRUE) usage of frequency and attenuation val-
ues from the arrays freqlist und gainlist.

sample_time LREAL Sam n ms which corresponds with the samples
of t ignal.

ple time i
he input s

new_filt_para BOOL This input must be set TRUE for one task cycle if new fil-
ter parameters should apply.

out untyped Filter output signal; the data type derives automatically
from the input signal.

used_filt_para STRING Output / indication of the used filter parameters

filt_not_real BOOL If the function was not able to evaluate a filter, e.g. due
to an incompliance of input signal and filter parameters,
this output is set TRUE.

last_error_string STRING Recent error message (text)

Combinations of parameters and their dependence

if "implementation" = then "characteristic" = ...

IIR Butterworth, Chebyshev, Elliptic
or InvChebyshev

FIR Rectangular, Bartlett, Blackman,
Hamming, Hanning or Kaiser

Sample application (Layout) on CD

sample_layout_digfilt_101.lyt

This sample application helps to get familiar with the function and usage of the
DigFilt function block. Some support for entering filter parameters (type,
implementation, characteristic) is provided.

The sample shows the filtering of a buffered signal (task 0) and a time-discrete
signal (task 2) as well.

cont'd. DigFilt

 © iba AG 2009

Page 4-44 Manual ibaLogic

4

4.2.9.4. DatFileWrite-function block – generation of iba data files (*.dat)

Function and usage

The DatFileWrite function block stores data in dat-files which may be analysed
later with ibaAnalyzer or any other offline analysis tool which is able to read the
iba dat-file format. The data types of the data that can be stored are INTEGER,
REAL or BOOL data or ARRAYs of these types. The data stored per channel in a
dat file can be single data or buffered data. Each individual data channel can be
enabled and application-specific information can be written to the dat file.

The number of data inputs to the DatFileWrite function block is extensible from
minimum 1 to a maximum of 16 input and output groups. For each group a data
input, an info input and an enable input together with a para_ok output,
last_error_text output and Mod_chan_no output are added.

Connectors

Connector Data type Description

casc_prev DWORD Not used, reserved for future use

store_values BOOL Enable storage; if the file is open data will be stored
in the dat file in every evaluation cycle this input is
set on TRUE.

num_values DINT Number of values to be stored; only used if buffered
values are used, the minimum number of stored
data per channel, per storing cycle is 1. This value is
taken into account every cycle when data is stored.

buf_values BOOL Enable use of buffered values; if set on TRUE buff-
ered values are used (this input is taken into account
once when a new file is created)

file_name STRING ame; file name of stored file including
drive and path. This value is taken into account once
when a new file is created.

Data filen

store_file BOOL Start function block; a rising edge on this input runs
the input connector check, opens a file and enables
internally the storing of data.

A negative edge on that input closes the file and
runs the postprocessing command if this function is
enabled.

 © iba AG 2009

ibaLogic Manual Page 4-45

 © iba AG 2009

4

Connector Data type Description

new_file BOOL Make a new file; a rising edge on this input closes
the currently used and open file and opens a new
file using the file_name input. In any case the
store_file input must be set on TRUE. (corresponds
to the continuous recording in ibaPDA)

sample_ time LREAL Sample time; this input value is used for setting the
clk-entry in the dat file and means the time between
two samples of a channel in seconds.

file_info STRING optional; at the time of closing the file the file info
string is used to add user defined entries in the dat
file.

techno_string STRING optional; at the time of closing the file the technos-
tring is inserted in the dat file.

new_module BOOL Align to new module; if set on TRUE a new channel
will be inserted at the beginning of a new module in
the file.

mode_select DWORD Control word for miscellaneous functions; the func-
tions described below will be executed if the corre-
sponding bits in the DWORD are TRUE.

Bit0: Flush Buffers

The contents of the internal data buffer for the
online-compression will be written into the dat-file.
Thus it's possible to access and analyse these data
with ibaAnalyzer even when the file is still open.

Bit1: Asynch Access (asynchron access)

All file and system calls will be executed on a sepa-
rate thread (asynchron to the thread of evaluation).
For this mode the following restrictions apply:

1. Only one dat-file can be opened by a function
block at a time. The current data file must be fully
stored before the next file can be opened.

2. The data buffer between task-evaluation (which
delivers the data) and the asychron thread (which
fills the data into the file) is limited to 1 MB.

Bit2...32: Not used, reserved for future use;

pp_command STRING Postprocessing command; is executed when a file is
closed and at least one sample is stored and the
function is enabled.

pp_enab BOOL Postprocessing enable; if set on TRUE, then the
postprocessing command is enabled.

sign_file BOOL If set on TRUE the file will be signed to enable en-
hanced ibaAnalyzer functions for offline analysis.

chanx_data untyped Data input for each channel (x = 0 ... 15)

chanx_info untyped Additional info for each channel (x = 0 ... 15)

chanx_enab untyped Enable data acquisition for each channel (x = 0...15)

cont'd.
DatFileWrite

Page 4-46 Manual ibaLogic

 © iba AG 2009

4

Connector Data type Description

casc_next DWORD Not used, reserved for future use

sum_values_stored DINT Sum of values stored in the current dat-file per
channel. Every time a new dat-file is created, the
value is set on 0.

file_is_open BOOL Status bit: File is open (= TRUE). Data can only be
stored if the file is open.

last_error_code DWORD Used for indication what error happened recently
(code)

last_error_string STRING Used for indication what error happened recently
(text)

file_is_signed BOOL This flag is set on TRUE when the file is closed and
could be signed. It is reset (FALSE) when a new file is
opened.

chanx_par_ok BOOL Status: Parameter ok for each channel (x = 0 ... 15);
When a file is opened, the parameters of the input
connectors (_data, _info and _enab) are checked for
data types and number of entries. If the check found
no error and if the channels are enabled for storing,
the chanx_par_ok output is set on TRUE.

chanx_error_string STRING For each channel (x = 0 ... 15)

If the check of the input connectors found an error,
a reason is displayed here (text message).

chanx_mod_chan_no STRING For each channel (x = 0 ... 15)

Indication of module and channel numbers of the
signal in the dat-file.

How to use the function block

After placing the "DatFileWrite"-function block in a layout the user needs to fill
out or specify the sampling time and make a decision whether single values or
buffered values should be used. Don’t forget to fill out the "num_values" input if
you use buffered values mode. Then the signals to be stored must be connected
to the chanx_data inputs. For each input channel that needs to be stored the
_enable input must be set on TRUE either by one single boolean input or an
matching array. The next step is to specify a file name.

In order to store data, first the file must be opened, and a check of the input
channels will be performed. To do that set the store_file value on TRUE. If the
check for any input channel fails, the related par_ok output will is set on FALSE
and an error string is generated. You may want to use the "ShowString"-function
block to take a look at the reason. Finally you should be able to fix the problem
so that the file_open output will turn on TRUE.

With the store_file input permanently set on TRUE and the store_values input set
on TRUE, the function block will store data.

When all data are stored in a file set the store_file input on FALSE. Then the file
will be closed, signed if selected and the postprocessing command may be exe-
cuted if selected.

cont'd.
DatFileWrite

ibaLogic Manual Page 4-47

 © iba AG 2009

4

Rules for overloadable input connectors

 Chanx_data
 Scalar data type INT, REAL or BOOL, if single values are used.
 One-dimensional array of data type INT, REAL or BOOL, if single values are

used every index of the first dimension means one signal, if buffered values
are used every index of the first dimension means a different sample of the
same signal.

 Twodimensional array of data type INT, REAL or BOOL, only if buffered val-
ues are used. Every index of the first dimension means one signal, every in-
dex of the second dimension means a different sample of the same chan-
nel.

 Chanx_info – optional
 STRING, this string is used for every signal (= channel) to add the info en-

tries into the dat files.
 Array of the same dimension as the data array of any data type (strings can

be hidden there, since there are no arrays of strings possible) the number of
entries in the first dimension must match the number of entries in the data
array.

 Chanx_enab –
 BOOL, this flag is used for every signal of a channel to enable the storing.
 One-dimensional array of data type BOOL, can be used with single values or

buffered values, the number of signals that can be enabled with this array
must match the number of signals in the data input.

Special Remarks

 The cascade inputs and outputs are not used yet.

 The time consuming function calls for storing data in a file are part of the
layout evaluation and may block the evaluation of your layout. In order to
prevent such problems enable the asynchron access mode (input
mode_select, bit1 = TRUE).

 The sorting of channels in the ibaAnalyzer supports 32 analog plus 32 digi-
tal channels per module. If more than 32 signals should be stored and / or a
mix of analog and digital signals is used it is strongly suggested to use the
ibaAnalyzer-compliant 32-analog-plus-32-digital-signal arrangement in that
order per module.

 In order to use the function block the ibaLogic layout must run in online
mode and some iba hardware must be installed so that the ibaLogic driver
is working. The function block also works in demo mode with or without
dongle. If the function block is used without a dongle the created dat-files
won't be signed, i.e. the data may be viewed with ibaAnalyzer but not ana-
lyzed. If ibaLogic is used without dongle but in eCon-mode, the dat-files
will be created without signature, i.e. the data may be viewed with ibaAna-
lyzer but not analyzed. If ibaLogic is used with a dongle the function block
creates signed dat-files for full analysis capability.

cont'd.
DatFileWrite

Page 4-48 Manual ibaLogic

 © iba AG 2009

4

Rules for text entries in dat-file

Any text entry in the dat file follows the rule <entry_name>:<any_text>. Entries
can be made for the file or for an individual signal. The entries are used and dis-
played in the ibaAnalyzer. The DatFileWrite function block allows to enter multi-
ple entries separated by ‘,‘ (comma). Some entry names have a predefined mean-
ing in the dat-file and writing some vital entries in the dat-file will be prohibited
by the function block. Some entries will be written by the function block itself
only if the user has made no selection.

Liste of global header text entries (excerpt)

Entry_name Meaning Class by ibaLogic by user

beginheader Beginning of the header vital yes no

starttime Starttime of the file vital yes no

clk Sample distance vital yes no

frames Number of values vital yes no

typ Type of file vital yes no

ibalogic ID of Generator optional yes no

technostring Technostring information optional yes no

endheader End of the header vital yes no

module_name_x Name of the module optional no optional

Liste of channel header text entries (excerpt)

Entry_name Meaning Class by ibaLogic by user

beginchannel Beginning of the header vital yes no

channel_offset Offset of Channel vital yes no

digchannel Digital Channel info vital yes no

name Name of Channel vital yes optional

minscale Minimum Scale vital yes optional

maxscale Maximum Scale vital yes optional

endchannel End of the header vital yes no

For storing additionally application-specific information in the dat-file the follow-
ing method can be used:

Add a string like „myentry:mytext“ in the input connector string. More than one
entry must be separated by ´,´ (comma).

Sample application (layout) on CD

sample_layout_DatFileWrite_301.lyt

This sample application helps to get familiar with the function and usage of the
DatFileWrite function block. Some support for parameterize the block is provided.

The sample shows the creation of a dat-file with single signals (Task Sample_1) and
buffered signals (Task Sample_2) as well.

cont'd.
DatFileWrite

ibaLogic Manual Page 4-49

4

4.2.9.5. DatFileCleanup-function block – clean up the harddisk

Function and usage

 This function block enables the ibaLogic application to care out a cleanup-
strategy in terms of old data files on the harddisk. Depending on settings and cri-
teria (input parameters) similar to those in ibaPDA (trigger settings / options) old
data files may be deleted or overwritten finally.

Connectors

Connector Data type Description

path STRING Storage location of the dat-files (= location concerned by
cleanup measures); drive name and full path required.

enab BOOL The function block will be evaluated with each positive
edge at this input; if enab is constantly TRUE, the func-
tion block is evaluated every 15 min.

min_space UDINT Disk space (given in MB) that at least should always be
free. If the function block detects a violation of this limit
it will start the cleanup measures, provided the
enab_space input is TRUE.

enab_space BOOL Enable keep-minimum-space-function; if set on TRUE the
monitoring of free disk space is enabled, see above.

enab_subdir BOOL Enable cleanup of empty subdirectories; if this input is set
on TRUE empty subdirectories will be removed too after
48 hrs.

min_n_files UDINT Minimum number of files to keep; this number deter-
mines how many files should stay on the disk. This pa-
rameter prevents the system from removing all the dat-
files. This situation may occur if other processes, e.g. a
PDA-system, writes data to the same harddisk, consum-
ing its free space and violating the lower limit of free disk
space.

enab_files BOOL Enable (= TRUE) the monitoring of number of files, see
above

extend_log BOOL Enable (=TRUE) creation of log file to record events dur-
ing cleanup.

new_para BOOL This input must be set on TRUE for one task cycle if new
parameters should apply.

cleanup_running BOOL Status flag: cleanup is running.

space_avail UDINT Free space (MB) during last cleanup

n_files_found UDINT Number of files found during last cleanup

last_error_code DINT Recent error message (code)

last_error_string STRING Recent error message (text)

 © iba AG 2009

Page 4-50 Manual ibaLogic

4

4.3 Global variables
Generally, ibaLogic is conceptually based on the use of encapsulated data struc-
tures. On the contrary to other control applications, global variables are the ex-
ception. There are a few global system variables which could be used in function
block diagrams, structured text or C++ statements (DLLs).

No. Variable Name
Layout Symbol

Target
Type

Description

1
logic_EvalTime

TIME

= time lapsed since start of the application;

2
logic_EvalDeltaTime

TIME

= time lapsed since last start of the task (scan
time); the use of this variable will help to
eliminate deviations in scan time and to
evaluate the correct results.

3
logic_Online

BOOL

= state of layout: online; certain functions or
the use of resources may be locked with this
variable in dependence of online or Hot-Swap
mode of the layout.

TRUE: Layout is online, outputs are activ

FALSE: Layout is offline, outputs are locked,
inputs are still active.

4
logic_Unlocked

BOOL

= state of Layout: unlocked; to be used for
locking default values if layout is locked.

TRUE: Layout is unlocked, modifications are
possible

FALSE: Layout is locked, modifications are
impossible

This variable can be used, for instance, in con-
junction with DLLs in order to prevent modifi-
cation of default values by the DLLs, if not al-
lowed.

5
logic_AcqRestartCount

UDINT

= counter value to indicate the number of
driver restarts since start of evaluation.

This variable can be used to inform the layout
about restarts of drivers (hardware) in order
to adjust the hardware parameters if needed.

 © iba AG 2009

ibaLogic Manual Page 4-51

4

4.4 Global FBs and macros
Global FBs and macros are to be used when multiple ibaLogic systems should use
these functions which are needed in different applications.

If such kind of function or macro blocks had been created by the user as local FBs
or macros first, they should then be copied or moved in the Windows Explorer
from the folder ...configuration\FBs_Macros to the folder
...configuration\globalRessource\FBs_Macros.

 • The same blocks should NOT be available in the local folder and in the
global folder at the same time, because they will always be displayed as
global FBs and macros.

• After deleting or copying of blocks in the folder
...configuration\globalRessource\FBs_Macros ibaLogic must be restarted
in order to refresh the display of the function tree.

• Deleting of FBs/MBs is only permitted in the Windows Explorer (not
inside of ibaLogic)!

• If the contents of a block has been modified afterwards, this block has
to be exported again as a local FB/MB, followed by copying it to the
global folder with the Windows Explorer.

4.5 Global DLLs
Global DLLs which had been created by the user in C or C++ are useful if the
functionality of a DLL is needed in multiple projects.

The global DLL is made available in ibaLogic by copy it to the folder
...configuration\globalRessource\DLLs, using the Windows Explorer.

 • The same DLLs should NOT be available in the local folder and in the
global folder at the same time, because they will always be displayed as
global DLLs.

• After deleting or copying of DLLs in the folder
...configuration\globalRessource\DLLs ibaLogic must be restarted in order
to refresh the display of the function tree.

• Deleting of DLLs is only permitted in the Windows Explorer (not inside of
ibaLogic)!

 © iba AG 2009

Page 4-52 Manual ibaLogic

4

4.6 Local FBs and Macros
Local FBs and macros are to be used when the functionality of a FB or macro
block (MB) is needed multiple times in the same project.

After the project-specific block has been created in the layout it must be ex-
ported. In order to export a FB or MB make a right mouseclick on the block in the
layout. From the context menü choose Modify Function Block, resp. Macro
Block and then click on the Export button in the FB-/MB-dialog. The new FB or
MB is then available as a file (*.fbm) in the folder ...configuration\FBs_Macros.

If there are more FBs or MBs already available as files in other projects they can
be copied easily with the Windows Explorer to the local folder
...configuration\FBs_Macros.

 • The same blocks should NOT be available in the local folder and in the
global folder at the same time, because they will always be displayed as
global FBs and macros.

• After deleting or copying of blocks in the folder
...configuration\globalRessource\FBs_Macros ibaLogic must be restarted
in order to refresh the display of the function tree.

• Deleting of FBs/MBs is only permitted in the Windows Explorer (not
inside of ibaLogic)!

• If the contents of a block has been modified afterwards, this block has
to be exported again as a local FB/MB, followed by copying it to the
global folder with the Windows Explorer.

4.7 Local DLLs
Local DLLs are to be used when the functionality of a DLL is needed multiple
times in the same project.

In order to use a DLL which had been created by the user in C or C++, it must be
made availble in ibaLogic in one of the following ways:

 When ibaLogic is running, use the menu File Open DLL... A file
browser helps finding the DLL-file. Click on the Open button and the DLL
will be loaded and copied to the folder ...configuration\DLLs.

 The DLL file may also be copied with Windows Explorer to the folder
...configuration\DLLs but the DLL is not available in ibaLogic until ibaLogic
has been restartet.

 • The same DLLs should NOT be available in the local folder and in the
global folder at the same time, because they will always be displayed as
global DLLs.

• After deleting or copying of DLLs in the folder ...configuration\DLLs
ibaLogic must be restarted in order to refresh the display of the function
tree!

Deleting of DLLs is only permitted in the Windows Explorer (not inside of ibaLogic)!

 © iba AG 2009

ibaLogic Manual Page 5-1

5

5 Process interface

The I/O process interface and the open communication interface of ibaLogic is
based on the use of preconfigured and easy connectable input- and output re-
sources. The available resources are shown in the resource area of the screen (tab
"Resources"). By means of the resource selection tabs at the bottom choose be-
tween input- and output resources.

5.1 Input resources
The input resources are subdivided into the following groups::

Overview input resources

• FOB-F / FOB-IO (incl. FOB 4i PCI card)
Standardized analog and digital inputs, 32 groups (modules) with 32 in-
puts each (max. 1024). Incoming connection by fibre optical link from

1) PADU (Parallel Analog Digital Units)
2) ibaNet750 (WAGO) Remote-I/O-terminals or
3) SM64 / SM128V-cards.

With a PCMCIA-F card only the first two modules will be used.

• FOB-F Buffered Mode
These inputs refer to the first eight modules of a FOB-F card, buffered by
ibaLogic environment.

Predefined set of input variables for measuring systems that use buffered
measured values from FOB-F cards (e.g. for FFT and recording applica-
tions). Max. buffer depth is 256 values for up to eight modules with 32
channels each (8* 32 = 256 channels).

• FOB-SD card
Full automatic interface to SIMADYN-D or SIEMENS TDC control devices
(CS12/13/14); it supports passiv and request mode.

1) SIMADYN-D Techno; predefined TechnoString.
2) SIMADYN-D Lite; predefined set of input variables by CS22

• FOB-M/IN
Predefined set of input variables for 25 kHz-measuring system with FOB-
M / Padu8 ICP / Padu8 M (vibration monitoring)

• L2BX/2 Flatness
Predefined set of input variables for flatness measurement; connection by
Profibus L2Bx-F or L2B x/8 PCI.

• L2B/In
Standardized analog and digital inputs, 32 groups (modules) with 32 in-
puts each (max. 1024). Incoming connection by profibus link from

1) S7 (only 28 Real Values per Module due to S7 limitations)
2) Any other Profibus Master

• Reflective Memory
Predefined set of input variables for a Reflective Memory connection. Analog
(integer or real) and digital inputs devided in groups of 32 modules with 32
inputs each (max. 1024). Special hardware components (cards from VMIC)
are required.

cont'd next page

 © iba AG 2009

Page 5-2 Manual ibaLogic

5

cont'd input resources • TCP/IP TechnoString
TCP/IP-input variables, one group of 16 STRING and one group of 96 FLOAT
variables; assignment of variables to TechoString is done under menu
TechnoString TCP/IP...

• CSV TechnoString
Choice of 128 TCP/IP input STRING variables; the single variable in
the CSV-string is separated by comma (CSV = Comma Separated
Value)

• eCon/PPIO IN
Predefined set of 32 input variables connected via the parallel port of the
PC (printer port, lptx).

• PlaybackIn
Predefined set of analog and digital input variables to be supplied with
data by iba data file in playback mode. 32 modules with 32 analog inputs
(integer or real) and 32 digital inputs each.

• Generator
Signal generator for sine, rectangular, triangular or custom- shaped sig-
nal with easy parameterization.

• System UTC Time
System time to be connected and used with time controlled functions for
display or evaluation.

5.1.1. FOB-F, FOB-IO or FOB 4i- Input Resources

The FOB-F, FOB-IO and FOB 4i – input resources are devided into groups of:

 Analog (real) Modules 1..32 or alternatively

 Analog (integer) Modules 1..32 and

 Digital Modules 1..32

Each module consists of 32 inputs, i.e. a maximum of 32 * 32 = 1024 analog and
1024 digital inputs are available.

Each fibre-optical connection of a FOB-F, FOB-IO or FOB 4i-card is linked to two
modules with 32 inputs, i.e. a total of 64 analog and 64 digital inputs.

Fig. 70 FOB 4i PCI-card, FO-connectors

 © iba AG 2009

ibaLogic Manual Page 5-3

5

One optical link can be connected to:

 one SM 64-IO-card (64 analog and 64 digital signals)

 two PADU 32 devices (2*32 = 64 analog and 64 digital signals)

 eight PADU8-devices (8*8 = 64 analog and 64 digital signals)

 eight WAGO-terminal heads (8*8 = 64 analog and 64 digital signals)

Fig. 71 FOB-F / FOB-IO input resources, placement in layout

The example in Fig. 71 shows the connection between ibaLogic and analog and
digital FOB-F / FOB-IO - input resources.

It is not necessary to connect all resources of a module with one ibaLogic-task.
Each signal can be selected individually and can be placed on the input signal
margin, resp. on the output signal margin.

When needed, all inputs (resp. outputs) of a module can be placed on the input
signal margin, resp. output signal margin by selecting the desired module and
dragging it on the corresponding margin. The following query "Split array into
single signals?" should be answered with "yes".

 © iba AG 2009

Page 5-4 Manual ibaLogic

5

5.1.2. FOB-F Buffered Mode

The group of "FOB-F buffered mode" input resources had been invented in order
to process signals of a much higher sampling rate, acquired by the FOB-F card,
than the sample time of a task in ibalogic would permit in continuous mode.

As an example 128 measured values (samples) of a signal which are required to
evaluate a FFT can be processed even when the sample time of the FOB-F card for
the data acquisition is about 1 ms but the sample time of the task is 50 ms

This has been made possible by a special measuring mode of ibaLogic, where
data get buffered by the runtime environment and made available as arrays of a
maximum depth of 256 values for the input resources. In order to prevent loss of
samples the sampling rate of the task, i.e. of the ibaLogic layout, must be higher
than the filling rate of the arrays.

For a reasonable use of this mode of operation select the ibaLogic SignalManager
mode.

There may be other applications which require less than 256 samples or which
don't need always buffered values or not all buffered values all the time. For
these cases there is a special communication interface between the task and the
ibaLogic runtime environment which provides the following inputs:

8 modules with 32 analog inputs (integer) each

8 modules with 32 digital inputs (bool) each

Fillcount is a counter to be increased by 1 everytime
the buffer got filled up and the new buffered data
had been transferred to the task.

Datasize is the actual number of samples which had
been buffered.

Cyctime is the actual sample time which had been
used at the fiber optical link. This input is relevant for
the so-called asynchron mode.

Fig. 72 FOB-F buffered mode input resources

 © iba AG 2009

ibaLogic Manual Page 5-5

5

5.1.3. Signals from Simadyn-D and TDC(FOB-SD / FOB-TDC)

Two types of signals are distinguished in case of a SIMADYN-D process interface:

 SIMADYN-D Techno (short for TechnoString)

 SIMADYN-D Lite (16 Modules, each with 32 analog (real) and 32 digital sig-
nals)

SIMADYN-D TechnoString (for FOB SD / FOB TDC)

The Simadyn-D technostring which is transmitted
through the FOB SD supports the functionality and
structure which is programmed within the Simadyn-D
PLC only. This telegram provides all the necessary data
to configure the QDA settings (i.e. FFT settings, stand
settings, roll diameters etc.) for a 7 stand aluminum or
steel mill. The structure is "hardwired" an cannot be
changed. Data will be exchanged by a FOB-SD or FOB-
TDC linking.

The connected Simadyn-D must provide a channel (type
Refresh) with the name Q1DAT and a length of 512
Bytes exactly. For further explanations and comments
which signals are used in which ranges please refer the
respective Simadyn-D documentation.

Note: The Q2DAT channel (1920 Bytes) is no longer
needed. This channel is replaced by the more practical
MxPDADAT channels (see next chapter).
Q1DAT_AcqLength = 512 // Technostring channel must have 512 bytes!
Q2DAT_AcqLength = 0 // old data channel, no longer needed

SIMADYN-D Lite (for FOB SD / FOB TDC)
This resource set is structured very similar to FOB re-
sources. A set of 8 analog and 8 digital “modules”
with 32 channels each is provided. Each module can
(but must not) be sent by one Simadyn-D CPU.

Note: FOB-SD have different resource types in ibaLogic.
For CS22 use the Simadyn-D-Lite resources for FOB-SD
the FOB-SD resource set!

In the Simadyn D / Simatic TDC PLC the data channels to
be implemented must be named M0PDADAT to
M7PDADAT with 132 Bytes length each (Type Refresh).
Each channel represents one “module”.

Some additional information for correct communication
abilities are needed, especially the identifiers for the
channel routing of Simadyn-D. Please refer to
SIMADYN-D documentation.

For setup of FOB-SD and FOB-TDC there is a dedicated dialog under the menu
File PCI-Configuration FOB-SD/TDC Settings.

 © iba AG 2009

Page 5-6 Manual ibaLogic

5

Please check also the iba_drv.cfg file for correct parameterization:

(//comments not to be found in the original file just added to explain the *.cfg
structure contents).

"CS22.." means CS22 or FOB SD or FOB TDC!

FOBSX_AcqAddress = 0xE0000
CS22_BgtName = PDA001
CS22_AcqAddress = 0xD0000
Simadyn_Sync_Timeout = 15
Simadyn_Proc_Timeout = 15
CS22_0_OwnName = DPDA1A
CS22_0_Partner = D1700B
CS22_0_SoftwareVersion = V420
CS22_1_OwnName = DPDA2A
CS22_1_Partner = D0900B
CS22_1_SoftwareVersion = V430
CS22_2_OwnName = DPDA3A
CS22_2_Partner = D1200B
CS22_2_SoftwareVersion = V430
CS22_3_OwnName = DPDA4A
CS22_3_Partner = D1500B
CS22_3_SoftwareVersion = V430
CS22_NBoards = 1
Q1DAT_AcqLength = 512
Q2DAT_AcqLength = 0
M0DAT_AcqLength = 132
M1DAT_AcqLength = 0
M2DAT_AcqLength = 0
M3DAT_AcqLength = 0
M4DAT_AcqLength =0
M5DAT_AcqLength =0
M6DAT_AcqLength =0
M7DAT_AcqLength =0

// FOB SD base address
// name of SD-rack, see “struc” schematics for correct id
// always !!
// timeout here is 15 seconds
//
// a name of your free choice to baptize the “PC”
// Coupling partner Dxx00B, where xx indicates
// where the CS1x motherboard is located; here slot 17
// This is the CS22 with the hw-id 01 and the name DPDA2A
// which is plugged in slot 09 in the rack PDA001

// version of the graphic design software “struc”
// the connected SD-CPU was structured with; here V4.30h
// V4.25 must be parameterized with V4.20

// number of active CS22 boards (not FOB-SD´s!)
// always when using a technostring
// always !!
// Note all channels have fixed structure and length
// shorter channels must be filled up with zeroes
// For every “module” with 32 analog plus 32 binary
// values a channel of 132 bytes length is needed
// M0DAT corresponds to module1, M7DAT to module8

 © iba AG 2009

ibaLogic Manual Page 5-7

5

5.1.4. Input Resources FOB-M/IN

FOB-M process interfaces are used in conjunction with Padu8-M, resp. Padu8-ICP,
analog-digital converters with a sampling rate of 40 µs (25 kHz) for the purpose
of vibration monitoring of machines. The following table shows the configuration
of channel 1 (link1) of the first FOB-M module. Up to four channels are possible.

Number of active Padu8-ICP unit (00 ... 96)
Sample time in µs for this Padu8-ICP unit

\

 | Actual gain setting for channels 1...8, given in dB

 | The current setting of each channel is indicated.

 |

/

\

 |

 | Actual setting of corner frequency (Hz) for channels 1...8

 | The current setting of each channel is indicated.

/

Current state of "reset" command
Current processing command

\

 | Analog input channels 1...8 (signed INTEGER)

 |

 |

/

\

 |

 | Binary input channels 1...8 (BOOL)

 |

/

- State of input buffer; TRUE = number of values exceeds buffer
- Size of data (multiples of 10), as soon as data are available
- State of link; TRUE, if link is ok
- TRUE if link state ok and Padu is activated for measuring
(FOMEASUREMENTSTART = TRUE)
- DATALOST = TRUE, if data rush in faster than beeing processed
- OVERRUN = TRUE, if buffer overflow and measurement inter-
rupted

TRUE, if FOB-M measurement is running

 © iba AG 2009

Page 5-8 Manual ibaLogic

5

5.1.5. L2Bx/2 Flatness

This specialized input resource was developed for the connection between iba-
Logic and a SIEMENS flatness control. The link between the two systems is a
Profibus L2-DP with the flatness-PC as Profibus master and ibaLogic (FOB L2B-
card) as slave. In order to start a communication both master- and slave address
must be known and configured. The FOB L2B-card should be parameterized in
one of the flatness modes (see below). No matter which mode is selected, the in-
coming data will always be assigned to the same ibaLogic input resources.

The dataset t
mation (C
control the Q

Beside of eight actuators t

On the FOB L2B-card, two
and 2) are av
control PCs.

ibaLogic mon
nection will
When "offline
the most recent received
flatness

Note: An inte
the time beha

o be transmitted comes with header infor-
oil No., Counter, Zone Width etc.) in order to

DA-display.

here are up to 80 zone values.

 input resources (processor 1
ailable for connection of up to two flatness

itors the Profibus-link. An interrupted con-
be detected and reinstalled automatically.
" (interrupted), ibaLogic freezes and keeps

data. In this case the QDA-
profile shows no further alteration of values.

rruption of the Profibus-link will not affect
viour of ibaLogic.

L2B – card configuration

When establishing a connection between ibaLogic and the target system, only
the data with reference to the selected mode will be requested. The target system
will adjust itself in compliance to the selected mode. An alternation of the mode
during operation is not permitted.

 see also chapter 2.6.3

 © iba AG 2009

ibaLogic Manual Page 5-9

5

5.1.6. Reflective Memory (RM)

The linking of RM-resources and RM-interface is part of the PCI configuration as
described in chapter 2.6.5

Each of the 32 RM-input modules consist of 32 input signals whose signal names
are clearly assigned to the modules. Additionally, each signal has a description
(text) which can be edited in order to improve the technical comprehension by
the user.

Fig. 73 Reflective Memory input resources, connection between module, signal name and description

The descriptions of the input signals appear also in the resource tree and further
in the layout when the signals are used. They also can be found in the tooltip
when placing the mouse cursor over a corresponding connector.

Fig. 74 Reflective Memory input resources, appearances of signal description

 © iba AG 2009

Page 5-10 Manual ibaLogic

5

5.1.7. TCP/IP-TechnoString

The TCP/IP TechnoString functionality is always defined as a certain structure be-
tween two partners. Any kind of data can be transmitted (float values, strings
etc.). This type of technostring needs a hard structure in means of how long (how
many bytes) a specific parameter or part of the technostring is. The assignment is
done with the help of the menu TechnoString TCP/IP... of ibaLogic. Any part
of the TechnoString can be selected and assigned to a TCP/IP-String variable
(1...16).

As a precondition for using this functionality the TCP/IP communication must
have been activated in the menu File System settings Other. The checkbox
TCP/IP Activate must be checked off.

Fig. 75 Example: Assignment of TCP/IP-String 2 to selected parts of the received TechnoString

The example in Fig. 75 shows how a selected part of the TechnoString (here:
characters "0733") is assigned to the variable "TCP/IP String 2". In order to do so,
please follow these steps:

1 Choose menu TechnoString TCP/IP.

2 In the field TCP/IP Port please enter the same port number which is used
by the source system (sender) for this TCP/IP communication.

3 In order to check the communication the source system may send a sam-
ple string message or you should use the software tool TcpIpTest...exe
from iba in order to create a sample string and send it to ibaLogic. In any
case the sample string should appear in the dialog TCP/IP Technostring.

4 Check the option Apply selected area to variable.

5 With the mouse cursor mark the characters in the displayed TechnoString
which should be assigned to a TCP/IP String variable. (If marking is not
possible please make sure that no technostring is beeing sent at this time.)

 © iba AG 2009

ibaLogic Manual Page 5-11

5

6 Click on the desired variable in the list of variables (here: TCP/IP String 2)
which should be connected to the marked part of the string. Ready!

In this way all TCP/IP String variables may be assigned to different parts of the
TechnoString.

It is essential that the TechnoString has a fixed structure, i.e. the same data must always be
at the same place inside the string. If, in the example above, "Value733" would be sent in-
stead of "Value0733" all following characters would be shifted by one position to the left
and TCP/IP String variables referring to these following characters wouldn't have the correct
value. As a consequence, leading zeros should be used, if applicable.

 For the purpose of TechnoString reception only the above mentioned settings are required.
The settings concerning TCP/IP and TechnoString in the menu File PCI-Configuration
TCP/IP Out Settings have nothing to do with the reception of TechnoStrings. These settings
only refer to the output or sending of TechnoStrings. (see also chapter 5.2.5)

 © iba AG 2009

Page 5-12 Manual ibaLogic

5

5.1.8. CSV-TechnoString

The CSV TechnoString is another method to transmit data to ibaLogic. All values
should be separated by commas (CSV = Comma Separated Values). Due to the
commas as separating signs, no fixed format of strings and values is required and
so it's somehow easier and more flexible than the TCP/IP-TechnoString method.
The fields of characters can be generated by MS-Excel or other programs which
are able to create files with comma separated values.

ibaLogic receives the data as a chain of characters (fields) and assigns them
automatically to the CSV-String 1...128. The assignment occurs according to the
order of the source definition.

The source should have the following format:

< field1>,< field2>,…..,…..,< field128> < cr > < lf >

Example:

Create a text file named "pipetest.txt" with a contents as follows (4 fields):

CSV-Test,1234,5678,hallo < cr, lf >

Don't forget to add the "carriage return" and the "line feed" at the end of the file.

Forward the file to the receiving PC, named "PDA", by using the DOS-command

copy pipetest.txt \\PDA\pipe\qda_asciiin

"qda_asciiin" is the keyword for the ibaLogic-Pipe (the three "i"s are correct!).

ibaLogic receives the data as a chain of characters and provides them as input
variables "CSV String 1...128" for further use. The conversion into other data types
is done by converting function blocks, e.g. ASCII to integer.

The state of "ASCII In Pipe #1 and #2" can be monitored by using the menu
View Pipes...

 © iba AG 2009

ibaLogic Manual Page 5-13

5

5.1.9. eCon/PPIO IN – inputs from eCon / eCon32

These input resources are dedicated to the eCon and eCon32 devices from iba.

The eCon devices are small I/O devices which have to be connected to a PC via the
parallel printer port. There are two types available:

eCon: This type consists of 3 analog inputs (AI), 2 analog outputs (AO), 8
digital inputs (DI) and 8 digital outputs (DO).

eCon32: This device provides 32 digital inputs and 32 digital outputs.

Up to two of these devices can be operated in combination by one parallel PC
port.

The assignment of eCon devices and input resources is as fol-
lows:

Card 0 first eCon at parall port

if eCon, then 3 AI and 8 DI
if eCon32, then 32 DI

Card 1 second eCon, connected in line to the first eCon

if eCon, then 3 AI and 8 DI
if eCon32, then 32 DI

The input signals ...Version,Valid and ...Granularity pro-
vide information about the connected device:

Version: Firmware version of the device,

Valid: Status indication whether input values are valid
or not,

Granularity: Step width depending on A/D converter resolu-
tion. A 10 bit converter resolution leads to a
step width of 64.

 For further informationen concerning the eCon devices please refer to the related hardware
documentation. That documentation also cares about the software engineering.

hw_man_econ_en_A4.pdf

 © iba AG 2009

Page 5-14 Manual ibaLogic

5

5.1.10. PlaybackIN – inputs for the playback operation mode

The input resources PlaybackIn had been invented especially for the operation
with iba data files (dat-files) as signal source. They have to be configured by
module assignment under menu File Program Settings Playback Module
Assignment.

See also chapter 2.4.4 and 3.6.4

Depending on the data type of the values as they are available in the dat-file, the
datatype of the input resources (integer or real) will adjust automatically.

The signal names will NOT be taken from the dat-file. They have to be entered
manually, if necessary.

A quantity of 32 * 32 input signals are provided in order to read dat-files of an
extended ibaPDA-system with 1024 analog and 1024 digital signals.

Using the optional operation mode with hardware I/O (menu File System set-
tings Other, Playback settings) it's even possible to combine the playback inputs
with real online inputs over FOB- or L2B-cards.

32 modules with 32 analog values each (integer or real)

32 modules with 32 digital values each

Playback Active is = TRUE, if the playback mode is active
(menu File System Settings General).

Playback Time in Dat File returns the current position of
the "cursor" in the dat-file. This value is given in seconds,
relativ to the start date of the recording in the dat-file.

 © iba AG 2009

ibaLogic Manual Page 5-15

5

5.1.11. Generator

The input resource Generator is a practical tool. It's an easy way to generate test
signals of different wave forms.

Fig. 76 Input resources, Generator

In order to use a generator signal just select the input resource Generator and
drag it to the input margin of the layout. As many instances of the genarator as
needed may be used with different wave forms at a time.

After drag&drop of the generator input a dialog opens as shown in Fig. 76 and
the following settings can be made:

 Description

This text entry will appear as name of the generator signal in the layout and
should decribe the signal clearly. Particularly when using many generator signals
this helps keeping clarity.

 Tabs with generator types

Under each tab there is a diagram which shows the characteristics of the corre-
sponding wave form.

All generator types have the following parameters in common:

 Period: Entry of the time of a full period, in sec.
 Amplitude: Amplitude of the signal; there is only one value, taken for both

positive and negative amplitude.
 Offset: Entry of offset (X-axis); if the signal should always be positive, the

offset must have the same value as the amplitude.
Moreover, there are other generator-specific parameters:

 © iba AG 2009

Page 5-16 Manual ibaLogic

5

 Tab Custom

This generator type allows the customized definition of a periodic signal. The pe-
riod will always be devided in 20 even parts (index). For each index (1...20) a sin-
gle value may be entered. In order to ease the work it's possible to choose one of
the other generator types first (Sine, Rectangle, Triangle) and then switching back
to the tab Custom. The wave form of the previous generator type is now the ba-
sis for the customized generator and the values can be adjusted easily. The value
adjustment can be performed by entering values in the index-related field or by
using the mouse on the curve in the diagram.

 Tab Sine

The sine signal doesn't require further settings.

 Tab Rectangle

A rectangle signal can be asymmetric in temporal terms. The total duration of a
period is defined by the parameter Period. The two parts of a period can be ad-
justed by the parameter T1 (given in sec.). If the option Ratio is checked, the
value in the field T1 is the ratio of T1/T2.

 Tab Triangle

The same remarks as for rectangle apply correspondingly.

5.1.12. System UTC Time

ibaLogic works on a so called realtime base, i.e. actions can be triggered by date
and time in ibaLogic. For that, the resource System UTC Time and function blocks,
such as SplitUtcTime, are provided.

Sometimes problems may occur during switch-over from or to daylight saving
time because it depends on how and when the system was configured.

 Note: Daylight Saving Time:

In the properties of Date/Time-settings in Windows® NT (Start Settings Control
Panel Date/Time) you should uncheck the option "automatic daylight saving time".

This has to be done prior to a change to daylight saving time. Otherwise it's useless.

 © iba AG 2009

ibaLogic Manual Page 5-17

5

5.2 Output Resources
The output resources are devided into the following groups:

• FOB-IO/ OUT
Standardized analog and digital outputs, 32 groups (mod-
ules) with 32 outputs each (max. 1024). Outgoing connec-
tion by fibre optical link to:

1) PADU (Parallel Analog Digital Units)
2) WAGO Remote-I/O terminals or
3) SM64- / SM128V-cards

• FOB-F/ OUT Buffered Mode
Predefined set of output variables for control of measuring
systems that use buffered measured values from FOB-F cards
(e.g. FFT applications).

Individual data request for up to eight modules.

• FOB-SD / FOB-TDC OUT
Full automatic interface to SIMADYN-D or Simatic TDC con-
trol devices (CS12/13/14 or GDM); eight groups (modules)
with 32 outputs each for analog and digital outputs (max
256).

• FOB-M/ OUT
Predefined set of output variables for 25 kHz-measuring sys-
tem with FOB-M / Padu8 ICP (vibration monitoring)

• L2B/ OUT
Standardized analog and digital outputs, 32 groups (mod-
ules) with 32 outputs each (max. 1024). Outgoing connec-
tion by Profibus network to:

1) Profibus Slave (e.g. Simatic S7)

• TCP/IP-OUT
TCP/IP output variables, groups of

1) TCP/IP outputs to PDA-system, 16 modules with 32 ana-
log and digital channels each (max. 512)

2) TCP/IP outputs for TechnoStrings, four output strings with
data and four control outputs

For output status see menu View TCPIP Out...

• QDA/PLR-OUT
Predefined set of output variables to QDA- or PLR-system.

• Reflective Memory
Predefined set of output variables for Reflective Memory
(RM) connection; 32 groups (modules) of 32 analog (inte-
ger or real) and 32 digital outputs each (max. 1024). The RM
connection requires special hardware components / inter-
face cards.

• eCon/PPIO OUT
Predefined set of 32 output variables to the parallel
printer port of the PC.

• Playback OUT
One digital "output" for restart of playback.

 © iba AG 2009

Page 5-18 Manual ibaLogic

5

5.2.1. FOB-IO or FOB 4o-Output Resources

The FOB-IO output resources are devided into groups of

 Analog (real) modules 0...31 or

 Analog (integer) modules 0..31 and

 Digital modules 0...31

Each module consists of 32 outputs, i.e. a maximum of 32 * 32 = 1024 analog
and 1024 digital outputs are available.

Example below: Each fibre-optical connection of a FOB-IO or FOB 4o-card is
linked to two modules with 32 inputs, i.e. a total of 64 analog and 64 digital
outputs.

Fig. 77 FOB 4o, output connections

One optical link can be connected to:

 one SM 64-IO-card (64 analog and 64 digital signals)

 eight PADU8-output devices (8*8 = 64 analog and 64 digital signals)

 eight WAGO-terminal heads (8*8 = 64 analog and 64 digital signals)

 © iba AG 2009

ibaLogic Manual Page 5-19

Fig. 78 FOB-IO output signals, example

The example in Fig. 78 shows the connection between ibaLogic and analog and
digital FOB-IO - output resources.

When needed, all outputs of a module can be placed on the output signal margin
by selecting the desired module and dragging it on the corresponding margin.
The following query "Split array into single signals?" should be answered with
"yes".

5

 © iba AG 2009

Page 5-20 Manual ibaLogic

5

5.2.2. FOB-F OUT Buffered Mode

These output resources are dedicated to the FOB-F buffered mode and are used
only for contol of the reading of the buffered inputs. These are no data outputs
to an external process. (see also chapter 5.1.2)

8 digital outputs for a focused module-specific request of buffered
data from the FOB-F interface (optimization of processor load and
reduction of administrative tasks).

..Datasize is the quantity of measured values (samples) that should
be provided at a time by the ibaLogic runtime environment (max.
256).

..Ratio is an integer multiple of the number of samples in a sample
time. E.g., Ratio = 2 means, that only every second sample will be
written to the buffer.

..Bufrequest is the control output to the ibaLogic runtime envi-
ronment. ..Bufrequest = TRUE means that the quantity of data
with reference to ..Datasize and ..Ratio should be buffered. The
buffer contents should then be transferred to the ibaLogic task
and the input FillCount should be incremented by 1.

..Cyctime is the cycle time to be transmitted in asynchron mode at
the fiber optical link (1 ...10 µs).

..Cyctito is the control signal (take-over) for the cycle time to be
transmitted in asynchron mode.

5.2.3. FOB-SD / FOB-TDC OUT – Output Resources

The outputs are part of the full automatic interface to SIMADYN-D or Simatic TDC
control devices. Like for the FOB-IO interface card, the output resources for FOB-
SD / FOB-TDC are devided into groups of

 Analog (real) modules 0...7 and

 Digital modules 0...7

Each module consists of 32 outputs, i.e. a maximum of 8 * 32 = 256 analog and
256 digital outputs are available.

 © iba AG 2009

ibaLogic Manual Page 5-21

5

5.2.4. FOB-M /Out – output resources

The FOB-M output resources are used to activate and to parameterize the PADU-
ICP unit (25 kHz measurement). Up to four links to a PADU-ICP (eight channels
each) are supported by ibaLogic (two FOB-M with two links each).

Number of the corresponding PADU-ICP unit
Desired sample time (in µs)

/
|
|

Desired gain for channels 0...7 (0...63 dB) |
|
|
\
/
|
|

Desired corner frequency for low pass channels 0...7, in Hz |
|
|
\

..Params Takeover: Trigger for parameter take-over to PADU-ICP
Reset the link

Data Request: Trigger for data request to PADU-ICP
Desired size of data blocks (rounded to multiples of ten, max.

2050)
..Select: Release measurement for this link

...Measurement Start: Start of measurement

For changing parameters the running measurement has to be stopped. Then the
parameters can be transmitted to the PADU-ICP.

 The PADU-ICP unit needs approximately 10 sec for internal evaluation of a new
gain. After the parameterization is finished the unit sends the new data
continuously to ibaLogic. The process of parameterization may affect other I/O
interfaces (e.g. FOB-IO) because the ibaLogic-I/O driver has to be stopped for two
cycles!

Data buffer:

In order to guarantee a proper data transmission of continuous data blocks, dif-
ferent data buffers of fixed size are installed:

 FOB-M interface, buffer size: 1024 values per channel

 I/O driver, buffer size: 25.000 values per channel

 ibaLogic, buffer size: 50.000 values per channel

 © iba AG 2009

Page 5-22 Manual ibaLogic

5

These figures lead to the resulting sample times, resp. task cycle times as follows:

 PADU-ICP sample time: e.g. 40 µs

 Size of data blocks: e.g. 2050 values

 ibaLogic task cycle time: e.g. 25 ms

1 / 25 ms * 2050 = 82.000 values/sec/channel Data Read Rate (DRR)

1 / 40 µs = 25.000 values/sec/channel Data Generation Rate (DGR)

Rule:

The data read rate should be at least three times the data generation rate!

A loss of one sample cycle must not cause a data loss in ibaLogic.

 © iba AG 2009

ibaLogic Manual Page 5-23

5

5.2.5. TCP/IP-Output Resources

The TCP/IP output resources are devided in two main groups:

 TCP/IP Out PDA, output of data for an ibaPDA-system
 TCP/IP Out Techno, output of TechnoStrings, e.g. to an ibaPDA-system

5.2.5.1. TCP/IP-Out PDA – signal outputs to a PDA-system

 Analog (real) modules 0...15,

 Digital modules 0...15 and

 Control control outputs, one per module 0...15

Each module consists of 32 outputs, i.e. a maximum of 16 * 32 = 512 analog
and 512 digital outputs are available for transmission from ibaLogic to ibaPDA via
TCP/IP.

For the purpose of transmission control there are 16 control outputs. The trans-
mission of data can be controlled (start/stop) individually for each channel 0 ...15
(i.e. for modules 0...15). To enable the transmission of data the corresponding
control output TOUTPDA Send xx must be set on TRUE.

Setup for data output to an ibaPDA-system

1 In menu File System settings Other check off the TCP/IP activation
checkbox.

2 In the same dialog click on the Configuration button (or alternatively
over menu File PCI Configuration TCP/IP Out settings) to open the
dialog for the TCP/IP settings. The settings in this dialog only refer to
the output of TCP/IP data. They are not relevant for TCP/IP reception
(inputs).

3 Click on the first "Connector" in the tree just under the branch "PDA".
Each connector corresponds exactly to one module in the TCP/IP Out
PDA output resources.

4 Now activate this connector by checking off the checkbox in the right
part of the dialog window. Enter IP-address of the target PC (ibaPDA-
PC) and the mutual port number. Due to the individual addressing of
the different connections it is possible to supply different ibaPDA-
systems with data.

5 Furthermore, it's possible to reassign the output signals to other mod-
ule numbers than 0...15 in the ibaPDA-system. This might be necessary
when these module numbers are already occupied in the ibaPDA-
system by other data sources (Padus etc.).

 © iba AG 2009

Page 5-24 Manual ibaLogic

5

6 As an option the transmission of an infochannel can be enabled or dis-
abled. The infochannel is used for transmission of additional informa-
tion which can be found later in the dat-file.

7 If data of more than one module (connectors) should be transmitted to
the same ibaPDA-System then click on the button Apply to following
modules. The settings will be copied to the modules (connectors) below
the current one.

8 Close the dialog by clicking on the button "Apply" or Save Configuration
respectively.

An active connection is indicated by a green symbol.

5.2.5.2. TCP/IP Out Techno outputs

 Data (string) up to four TechnoStrings 0...3 and

 Control control outputs for each string

Each TechnoString output can contain ASCII-strings of up to 1024 characters, in-
cluding termination (0 hex).

In order to control the TCP/IP transmission a group of control outputs is provided.
Each of the communication channels 0...3 (corresponding to TechnoStrings 0...3)
can be startet or stopped by these control outputs. The transmission of the
strings is enabled when the corresponding control output TOUTTECHNO Send x is
set on TRUE.

Setup for Technostring output

1 In menu File System settings Other check off the TCP/IP activation
checkbox.

2 In the same dialog click on the Configuration button (or alternatively
over menu File PCI Configuration TCP/IP Out settings) to open the
dialog for the TCP/IP settings. The settings in this dialog only refer to the
output of TCP/IP data. They are not relevant for TCP/IP reception (in-
puts).

3 Click on the first "Connector" in the tree just under the branch "TechnoS-
tring". Each connector corresponds exactly to one TechnoString, i.e. one
TCP/IP Out PDA output resource.

 © iba AG 2009

ibaLogic Manual Page 5-25

5

4 Now activate this connector by checking off the checkbox in the right
part of the dialog window. Enter IP-address of the target PC (e.g.
ibaPDA-PC) and the mutual port number. This port number should dif-
fer from the port number for data transmission. Due to the individual
addressing of the different connections it is possible to supply different
ibaPDA-systems with TechnoStrings.

5 If more than one TechnoString (connectors) should be transmitted to
the same ibaPDA-System then click on the button Apply to following
modules. The settings will be copied to the modules (connectors) below
the current one.

6 Close the dialog by clicking on the button "Apply" or Save Configuration
respectively.

Fig. 79 TCPIP TECHNO Out, connection between output signals and TCPIP settings

ibaLogic always transmits the TechnoString with an empty termination (0 hex). Therefore, it
is required to enter another termination (0) instead of carriage return in the TechnoString
setup-dialog in ibaPDA.

Moreover, it is strongly recommende that no other user in the TCP/IP network uses the
same port numbers which are used for the TechnoString communication. Otherwise, sys-
tem interferences may occur.

 © iba AG 2009

Page 5-26 Manual ibaLogic

5

Setup with older versions of ibaLogic:

ibaLogic versions < 3.83c provide the setup of TCP/IP communication in the ISA
configuration dialog.

Fig. 80 TCP/IP setup in former ibaLogic versions

Before releasing the TCP/IP – PDA outputs the corresponding driver must be re-
leased ("TCPIP" = 1). Each output has to be configured with the following entries:
enable output (1), IP-address of the ibaPDA-PC (e.g. 10.0.2.199) and port number
(e.g. 40000).

The TCP/IP-PDA Out-channels should be configured with the parameters
TCPIP_Out1_Adr / ..._Para to TCPIP_Out16_Adr / ..._Para.

The TCP/IP Techno Out-channels should be configured with the parameters
TCPIP_Out17_Adr / ..._Para to TCPIP_Out20_Adr / ..._Para.

To get the configuration dialog, use menu View ISA Configuration... and en-
ter the required information under the tabs "TCP/IP-I" and "TCP/IP-II". Save the con-
figuration and restart ibaLogic.

This dialog is also still available in up-to-date versions of ibaLogic in the menu
File, but it's disabled when no ISA-card has been detected.

 © iba AG 2009

ibaLogic Manual Page 5-27

5

5.2.6. QDA Out- output resources

In order to understand the communication between QDA and ibaLogic, please
follow this short introduction to the topic of "Named Pipes". QDA and ibaLogic
use the "Named Pipes"-method for connection over TCP/IP networks.

Basic properties of ibaLogic's communication by "Named Pipes":

The use of Named Pipes offers the
possibility to use multiple synchro-
nized PC-workstations. As a benefit
of this concept, the workstations can
be placed whereever they are
needed. Usually the first PC-
workstation is placed in the switch-
house or control room. This first
workstation provides the necessary
hardware components for the proc-
ess interface and collects the data to
be measured. More PC-workstations
can be placed on control pulpits,
maintenance stations or whereever it
makes sense.

ibaLogic uses the "Named Pipes"-
concept for communication with
many other applications, even with
itself when several ibaLogic-
applications are running on different
workstations. "Named Pipes" is a
TCP/IP application layer functionality
which is available on all Windows
NT® workstations.

The example (left) shows two syn-
chronized QDA-PC-workstations
which are connected with a single
ibaLogic source by Named Pipes. The
entire set of data is sent both to the
local QDA on PC "QDA-1" and to the
second PC "QDA-2".

Remark: The reference "QDA-1" on
the PC QDA-2 is a reference to the
name of the PC and not to the iba-
Logic application! "qda_pipe" is the
address reference for the application.

As soon as a signal has been defined, all other applications which are following in
terms of data flow are able to use the signal name immediately. So, every signal
has to be named only once.

 © iba AG 2009

Page 5-28 Manual ibaLogic

5

5.2.7. QDA/PLR OUT - resources

All control and data connections for QDA are managed in the QDA/PLR OUT sec-
tion of the ibaLogic-output resources.

There are six groups of resources:

• Channels

• 3X-channels

• Variables

• Controls

• Strip Tags and

• Material Tracking

5.2.7.1. Channels

ibaLogic supports the use of up to 96 channels which are structured as follows:

 Value CH # (float) // Signal value

 Reference CH # (float) // Reference value

 Low. Limit CH # (float) // QDA lower signal limit value

 Up. Limit CH # (float) // QDA upper signal limit value

The channels can be selected in order to be monitored on one or more QDA-
recorders (1...6).

Like for all other output resources to QDA the names of the outputs can be al-
tered individually by doubleclick on the output name after it has been placed in
the output margin area, e.g. "Value CH #1" → "Tension 1". Once they are con-
nected, they are „piped“ to QDA. Note that the variable names are piped too, so
that QDA would address the signals by their names which you see within the
output resource area.

Remark: If you load another logic plan (layout), the resources will not be updated
with the specific variable names included in the plan, but the logic plan itself has
the given names. So, QDA will always have the correct assignment to signal (i.e.)
but within the resource window it would be called by its default name, e.g. Value
CH 1. Because the channel information data are transmitted every minute, it may
be helpful to restart QDA in order to shorten the update time.

5.2.7.2. 3X-Channels for QDA and ibaVision3X

There are two 3D-channels "Flatness 1" and "Flatness 2". These channels are dedi-
cated to the QDA 3x-window. So, the data, coming from a flatness control system
(e.g. SIEMENS Flatness-PC), only need to be linked with the 3x-channel.

 - ibaLogic supports up to 2 * 128 3D-channels

 - QDA provides a 3D-window

 - ibaVision3x supports an unlimited number of windows to be supplied by
the same ibaLogic-pipe.

The control variables for the QDA 3x-display are described in the following sec-
tion.

 © iba AG 2009

ibaLogic Manual Page 5-29

5

5.2.7.3. Variables

The set of variables is used for remote parameterization of QDA. Usually, the vari-
ables are part of an input TechnoString which comes by TCP/IP or directly from
the PLC. There are three components of QDA which refer to the variables.

 QDA File storing and rolling material information
 QDA 3X-window scaling
 QDA FFT window roll stand symbols

Variable name / resource Meaning in ibaLogic Action in QDA, if connected Remark
counter number of received telegrams

[float]
none

Data version number Version of data set [string] none

Time stamp Actual time of data set [string] Time stamp in recorder strip

Strip id “name” of coil [string] Names file to be stored when
selected in the QDA data stor-
age setup menu (create file
name by strip id enabled)

With the ability of string op-
erations, ibalogic can combine
the incoming strip id with a
trigger counter to create
“new” filenames

Strip length Estimated strip length (constant for
one strip!) [float] [m]

Scales the x-axis of length
based QDA strips and the 3X-
window (static option in QDA
general properties enabled)

If strip length changes while
recording a coil ,QDA can run
into performance problems
because of continuously new
scales of the x-axis. Lowest
possible strip length is 200m!

Head length Length of strip head [float] [m] none

Tail length Length of strip tail [float] [m] none

S1: Diameter BUR top
:

S5: Diameter BUR top

Dimensions of the top backup rolls
for stands 1 to 5 [float] [mm]

S1: Diameter BUR bottom Dimensions of the bottom backup
rolls for stands 1 to 5 [float] [mm]

S4: Diameter IMR top
S5: Diameter IMR top

Top intermediate roll diameters of
stands 4 and 5 [float] [mm]

S4: Diameter IMR bottom
S5: Diameter IMR bottom

Bottom intermediate roll diameters
of stands 4 and 5 [float] [mm]

S1: Diameter WR top

S5: Diameter WR top:

Dimensions of the top working
rolls for stands 1 to 5 [float] [mm]

S1: Diameter WR bottom
:

S5: Diameter WR bottom

Dimensions of the bottom working
rolls for stands 1 to 5 [float] [mm]

All these geometric dimen-
sions control the behavior of
the stand symbols in the QDA
FFT-window. With known
stand speeds and gear ratios,
possible “excentrities” of rolls
can be detected.

S1: Thickness set point
:

S5: Thickness set point

Estimates thickness after stands 1
to 5 [float] [mm] [mm]

none

S1:Reduction (out of roll-
ing directive)

:

S5: Reduction (out of roll-
ing directive)

Reduction factor between incom-
ing and outgoing material of a
stand in percent [float] [%]

Controls the length forward-
ing speed of the static strips
in QDA.

These factors normally come
from the L2 control system

Small zones
Wide zones
First zone
Last zone

Define the number of small and
wide zones of the flatness measur-
ing system or similar multi trans-
ducer systems [float] [-]
First zone/last zone control the dis-
played width – cut the zones where
no material flow is detected

Number of wide zones (in the
middle of the strip) and small
zones (at the edge of the
strip) to control the 3X-
window layout. Note the sum
small zones + wide zones
must be identical to the num-
ber of connected 3X-Signals!

Message Rec. 1
:

Message Rec. 6

Name for a recorder strip [string] The message is displayed in
the corresponding recorder
strip message box

Variables 90 to 97 Recorder status controls 1 to 8 Connected to either recorder
window 1 to 8..
A log. 0 disables the recorder
movement, a log. 1 enables it.

In some QDA versions these
resources must be wired and
enabled to enable time based
recorder movement!
UseRecStat = 1

Variable xyz Reserved signals not yet connected to QDA
should not be used !

 © iba AG 2009

Page 5-30 Manual ibaLogic

5

5.2.7.4. Controls

The control resource set actually supports four different functions which control
the QDA recorder.

 Start Acquisition: Starts the QDA recorder with transition from FALSE to
TRUE

 Stop Acquisition: Stops the QDA recorder with transition from FALSE to
TRUE

 Pause Acquisition: Pauses the recorder while this signal is held TRUE

 Print: Prints a hardcopy of the actual screen.

 Save CAM: Stores the CAM contents

 Length Trigger: Meter pulse for QDA trend-window (length-based statistics)

 Head: TRUE to mark the phase when the strip head is rolled

 Steady state: TRUE during the phase of "Steady state" (constant operational
conditions)

 Tail: TRUE to mark the phase when the strip tail is rolled, initiation of corre-
sponding calculations

The pause function gives you the advantage to save recording capacity while the
mill is stopped e.g. for repair without losing the relation between the coil in the
mill and the corresponding file. While pause is active the recorder just waits until
pause is disabled again to continue recording in the same file. Because of this
behavior, it is obvious that it would be helpful to detect this pause later in the
analyzing phase. To do this, just delay the pause signal for a few milliseconds
with the help of ibaLogic and record the not delayed pause signal.

5.2.7.5. Material tracking (QDA Recorder #6 controls)

To control the complex functionality of an online length-based material tracking
screen a set of controls has been implemented. The counterpart of this function-
ality is the recorder #6 in QDA.

The controls are split in 2 sections – Feeds and Triggers:

 Feeds (1...8), real:

These controls monitor the material flow to each of the 8 recorder strips in re-
corder #6. Note that each feed corresponds exactly to one strip in this recorder!

 Triggers, boolean:

Indicate that the “material” has reached just this position

Example:

If “Feed 1” shall control the flow of the material which leaves stand 1 (shown in
recorder #6, strip 1, where counting begins with strip 0) the “Trigger 1” would
indicate that the material has just reached this position.

This part of ibaLogic + QDA requires a good knowledge of the process and the
process control system to establish this part of functionality.

 © iba AG 2009

ibaLogic Manual Page 5-31

5

5.2.7.6. Strip Tags

This resource set is used to control the QDA strip label contents. For every re-
corder (6) and every strip within a recorder (max 8) a control (data type string) is
available. So, ibaLogic is able to control the label written to the QDA online (and
offline) display. The labels will be stored by QDA. At every start trigger event or
when the strip tag contents has changed the string is transmitted to QDA.

Any ASCII string can be sent to QDA (max 10 characters).

A maximum of 20 labels (prints) per strip and screen is provided by QDA (e.g., if
you define a label which changes every second, and the QDA screen is set to
monitor 60 seconds, you would see 20 labels moving over the screen from left to
right or vice versa).

5.2.8. Reflective Memory (RM)

The link between RM-resources and RM-interface is part of the PCI-configuration
as described in chapter 2.6.5.

Each of the 32 RM-output modules consist of 32 output signals whose signal
names are clearly assigned to the modules. Additionally, each signal has a de-
scription (text) which can be edited in order to improve the technical comprehen-
sion by the user.

Fig. 81 Reflective Memory output resources, connection between module, signal name and description

The descriptions of the output signals appear also in the resource tree and further
in the layout when the signals are used. They also can be found in the tooltip
when placing the mouse cursor over a corresponding connector.

Fig. 82 Reflective Memory output resources, appearances of signal description

 © iba AG 2009

Page 5-32 Manual ibaLogic

5

5.2.9. eCon/PPIO OUT – outputs to eCon / eCon32

 These output resources are dedicated to the eCon and eCon32 devices from iba.

The eCon devices are small I/O devices which have to be connected to a PC via the
parallel printer port. There are two types available:

eCon: This type consists of 2 analog outputs (AO) and 8 digital outputs (DO).

eCon32: This device provides 32 digital outputs.

Up to two of these devices can be operated in combination by one parallel PC
port.

The assignment of eCon devices and output resources is as
follows:

Card 0 first eCon at parall port

if eCon, then 2AO and 8 DO
if eCon32, then 32 DO

Card 1 second eCon, connected in line to the first eCon

if eCon, then 2 AOI and 8 DO
if eCon32, then 32 DO

The digital/analog conversion of the analog output values is
based on a 10-bit resolution (step width on digital side = 64)

Because the system is not able to detect the type eCon device which is connected,
the correct settings have to be made in the system settings (File System set-
tings Parallel).

See also chapter 2.5.3

Connected with the selection of the eCon device is a so-called zero mask. The
zero mask forces all outputs of the eCon to zero (0) when the ibaLogic layout is
stopped or switched to offline mode. (safety reasons)

Concerning the analog outputs please note that the output value 0 (zero) corre-
sponds to a hexadecimal value of 0x8000 (high + lowbyte) in the zero mask. The
eCon devices have an analog output range from –10 V to +10 V. A zero mask of
0x0000 would cause an output value of –10 V.

For a better comprehension of the connections between hex-code and output as-
signment please refer to Fig. 83 on the following page.

 © iba AG 2009

ibaLogic Manual Page 5-33

 © iba AG 2009

5

Fig. 83 Hex-addressing of analog and digital outputs for eCon and eCon32 (zero mask)

 For further informationen concerning the eCon devices please refer to the related hardware
documentation. That documentation also cares about the software engineering.

hw_man_econ_en_A4.pdf

5.2.10. Playback OUT

One difital output is provided for the playback mode of operation but it's only for
internal use. This output may be set on TRUE or FALSE by the ibaLogic layout in
order to control the playback of a dat-file, respectively to restart the playback.

Playback Out Restart, if set on TRUE (impulse), the "cursor" for re-
playing the data file is reset to the file beginning (first sample) and
the playback starts again.

Page 5-34 Manual ibaLogic

5

5.3 OPC - Communication
The intention of the OPC standard interface (OLE for Process Control) is to ad-
vance the integrated use of automation and control systems, field devices and of-
fice applications.

Meanwhile, the OPC interface, which was specified by the "OPC foundation", is
considered as a powerful interface in the Windows® environment and it is sup-
ported by many users and manufacturers. OPC is based on the OLE/COM technol-
ogy from Microsoft Corporation. According to the OPC specification there are
two interface definitions: the "Custom Interface" and the "Automation Interface".

Fig. 84 OPC-Interfaces

As an OPC client, e.g. a Visual Basic-application communicates with the OPC
server by the "Automation Interface". (see also part B, "References": [4], [5])

In order to explain the process of OPC communication the interaction between
ibaLogic and a Visual Basic application is taken for example in the following.

5.3.1. OPC Automation Server Object Model

Fig. 85 OPC Automation Server Object Model

 © iba AG 2009

ibaLogic Manual Page 5-35

5

Object Description

OPCServer A client has to create an instance of the OPCServer object first.
Then the client must connect this instance with the OPC Data
Automation Interface (method 'connect'). Now, the OPCServer ob-
ject can be used to get general information from the server and to
create and manage OPCGroup objects.

OPCGroups This is a collection of all OPCGroup objects which were created by
a client within one OPCServer object including their methods of
creation, cancellation and management. It also contains the default
properties of the OPCGroup objects at the time of their creation.

OPCGroup An OPCGroup object is a mean to organize data, e.g. an operator
screen or a report. The client requests only the data which are re-
lated to the screen, resp. report, using a specified transmission rate.

OPCItems This is a collection of all OPCItem objects which were created by a
client within an OPCServer object including their methods of crea-
tion, cancellation and management. It also contains the default
properties of the OPCItem objects at the time of their creation.

OPCItem An OPCItem represents a connection to a data source in the server.
Every item consists of a value (type Variant), state information and
timestamp.

OPCBrowser An OPCBrowser object shows the hierarchy which has been in-
stalled on th eserver, i.e. the branches and items. The browser func-
tion is to be used optionally.

5.3.2. Installation of the OPC Driver-DLLs

Before starting a communication between ibaLogic and a Visual Basic application
it is required that all participating PC workstations have the same OPC DLLs (DLL
= Dynamic Link Library) installed. The following DLLs are required:

Opcproxy.dlI size: 76kB date: 11/27/02

Opccomn_ps.dll size: 60kB date: 11/27/02

Opcdaauto.dll size: 156kB date: 11/13/00

These three files can be found on the ibaLogic CD-ROM in the folder
\sample_OPC_VB_V103\OPC_Install\OPC_DLL's.

In order to register the DLLs on your PC please follow these steps:

1 If you have an up-to-date version of the ibaLogic CD-ROM you'll find there a
DLL-installer program (install.exe) in the folder
sample_OPC_VB_V103\OPC_Install\. Just execute this program.

2 ...or copy the entire folder sample_OPC_VB_V103 from CD in a folder of your
choice on the harddisk of the ibaLogic-PC.

3 Browse in Windows Explorer for the program...\ sample_OPC_VB_V103
\OPC_Install\Install.exe and start it by a doubleclick. The successful registration
of the DLLs will be posted.

If you don't have access to this install program (e.g. with older installations of
ibaLogic) then proceed as follows:

 © iba AG 2009

Page 5-36 Manual ibaLogic

5

1 Copy the above mentioned DLL-files into the system-folder on the harddisk of
all involved PCs: "c:\Winnt\System32" (Windows NT) or c:\windows\system32
(Windows XP) respectively.

2 Afterwords, the DLLs have to be registered one by one, using the command
on in the Windows task bar and Execute... "regsrv32". Use the Start-butt

3 Make sure, that the three DLL-files are installed on the OPC server (ibaLogic)
and on the OPC client (Visual Basic), too. In case of using a single workstation,
the DLLs need to be installed only once.

 © iba AG 2009

ibaLogic Manual Page 5-37

5

5.3.3. OPC-sample application with Visual Basic

OPC-VB sample application (sample_OPC_VB_V103)

For a better understanding of the OPC-related functions in ibaLogic you'll find a
simple sample application on the ibaLogic CD-ROM in the folder
\sample_OPC_VB_V103.

This folder contains all necessary programs and files for running the ibaLogic
application. An installation of Visual Basic (VB) on the PC is not required.

For those of you who'd like to examine the Visual Basic application (project) and
like to reuse parts of it for their own projects, the relevant programs and files are
stored on the CD as well. In order to open the VB-project an installation of Visual
Basic (Visual Studio) on the PC is required.

Please follow these steps to run the sample application:

1 If not done yet, please copy the entire folder sample_OPC_VB_V103
from CD into a folder of your choice on the harddisk of the ibaLogic-PC.

2 Start ibaLogic.

3 Open the sample application from the folder
... \sample_OPC_VB_V103\LYT-File\sample_layout_OPC_VB_V103.lyt

4 Switch the layout online by clicking on

 (pink background color).

5 In the Windows Explorer start the VB-project
\sample_OPC_VB_V103\VB_application\sample_application_OPC_VB_V103.exe
with a doubleclick.

A new window should appear on the screen, showing the values of the OffTask-
connectors in the ibaLogic layout.

Fig. 86 OPC sample application, windows

The following OffTask-connectors are defined as outputs to Visual Basic:

OPC_Output_Integer Output INT as displayed value

OPC_Output_Real Output Real as displayed value

OPC_Output_String Output of an ASCII character field (text)

OPC_Output_Bool Output as boolean variable (here red/green)

The following variables may be entered in the VB operator- and display window
and called up in ibaLogic:

 © iba AG 2009

Page 5-38 Manual ibaLogic

5

OPC_Input_Integer Field for entry and display of an integer value in ibaLogic
(enter values by using the up/down arrow buttons)

OPC_Input_Real Field for entry and display of an real value in ibaLogic
(enter values by using the up/down arrow buttons)

OPC_Input_String Field for entry and display of a text (ASCII-string)

OPC_Input_Bool Button for switching (toggle) in ibaLogic

The next figure illustrates the connections of data flow between ibaLogic and VB
and shows the settings of the OffTask-connectors.

Fig. 87 OffTask-connector settings for communication between ibaLogic and Visual Basic

 © iba AG 2009

ibaLogic Manual Page 5-39

5

OPC-Diagnostics

The OPC-connection monitor
is a helpful tool for checking
the OPC-VB-communication.
This tool is not part of iba-
Logic but of the VB-sample
project on the CD.

In four different views (selec-
tion over menu) information
is available about:

- quantity, names and val-
ues of OPC-variables

- status ok / error

- duration of read- and
write access cycles

- event history

- PC-connection

 If OPC-client (ibaLogic) and OPC-master (e.g. a HMI-system) are running on different PCs,
communicating over network, please note the security settings when working under Win-
dows XP.

See also chapter 6.2.3.

 © iba AG 2009

ibaLogic Manual Page 6-1

6

6 Installation

6.1 Installation of ibaLogic

6.1.1. Installation with install wizard (for eCon only)

1 Insert the ibaLogic insatllation disk into the CD-ROM drive of your PC. The in-
stallation wizard starts automatically. If not, please execute the program
Setup.exe on the CD.

2 Choose your preferred language. The language selection will not only affect
the installation dialog but also the documentation and sample applications
which are copied to your harddisk.

3 Follow the messages of the installation program.

4 Eventually, a new dialog opens in order to select a parallel printer port which
may be connected to an eCon device. Select the port from a field (left) in the
dialog. Under Windows XP you can check the availability of parallel ports in
your system by using the device manager.
If you need more information about the setup of the parallel port just click on
the corresponding button. Close the dialog with Next.

5 In the next step select the type of eCon device which may be used. If you plan
to use only one eCon, just select the first one (left). When using two eCons se-
lect both. Click on Next.
You can change these settings any time later.

6 Click on Finish.

6.1.2. Standardinstallation from CD

1 Create a folder on the harddisk of your PC, e.g. c:\ibaLogic.

2 Copy the entire folder \ibaLogic\ from CD into that folder on your harddisk.

3 If you are working under Windows NT please remove the read-only attribute
from the files after copying. This not necessary when you are using Windows
XP.

4 If you have received an ibaLogic update by email or if you have downloaded a
new release from the web, please extract all files from the zip-file into the iba-
Logic program folder on your harddisk.

5 Start ibaLogic with a doubleclick on ..\ibaLogic\ibaLogicVersion.exe in the
Windows Explorer or use the execute command in the start-menu of Win-
dows. ibaLogic will create all required subdirectories.

The folder \ibaLogic\configuration\schematics is the standard folder for ibaLogic
application programs which are to be stored as layout (*.lyt) and Structured Text
(*.txt).

The folder \DLLs will later contain all DLLs and the folder \FBs_Macros will contain
all function blocks and macroblocks that will be created during engineering.

 © iba AG 2009

Page 6-2 Manual ibaLogic

6

Please feel free to establish a shortcut for ibaLogic on the desktop or in the pro-
gram-start-menu.

This can be useful if the PC is used rather for engineering than for real online
process control, because other programs could be also used on it. But on a PC
which is dedicated to the control of processes or machines, no other PC-
application should be installed (such as office tools, games etc.). In that case an
ibaLogic call in the Windows autostart folder is enough and recommended.

6.2 USB dongle
Due to the wide and increased availability of USB-interfaces in PC-systems iba of-
fers also the software hardlock (dongle) for USB-sockets. As an advantage the se-
rial interface can be used for other applications, e.g. for control connections to
an UPS (Uninterruptable Power Supply), or for communication.

USB is generally supported by Windows XP. USB is usually not supported by Win-
dows NT, Therefore a manual installation is required.

6.2.1. USB dongle and Windows XP

The support for USB-Dongles is to be installed autoamatically by the iba software
products, such as ibaPDA, ibaLogic, dongleupgrade etc.

A manual installation is not required.

6.2.2. USB dongle and Windows NT

In order to install manually the USB support on an existing Windows NT installa-
tion, please follow these steps:

1 Start the program CBSETUP.exe which has come with the dongle and

2 e Install and click Ok.

ibaLogic on the CD-ROM.

In the first dialog choos

Choose Yes 3

4 Ok. Select CRYPTO-BOX USB and click

 © iba AG 2009

ibaLogic Manual Page 6-3

6

5 Depending on the operating system you'll be informed if a reboot of the
 come into effect. Usually, a reboot PC is required for the installation to

is required with Windows NT, with Windows XP it's not.
Confirm the last message with Ok.

There is also batch routine to get the USB support installed. If you like to use this
routine start the installation as follows:

CbSetup.exe /q /CRYPTOKEN

 Please make sure that the USB-interface is enabled in the BIOS of your PC.

ing dialog, the reason may be a plugged
ogic because of a missing USB

If you start ibaLogic and see the follow
USB dongle which could not be detected by ibaL
support.

In that case, click on the button Install USB driver.

 © iba AG 2009

Page 6-4 Manual ibaLogic

6

6.2.3. Security settings in Windows XP

 Some settings concerning communication and networking are more restrictive
in Windows XP compared to Windows NT or other former Windows releases.

Some features of iba's software products take advantage of distributed PCs con-
nected by a network, for example:

 ibaLogic connections between OPC-client and OPC-server

 Start of ibaAnalyzer triggered by a remote PC, running the postprocessing
command by a DatFileWrite-function block in ibaLogic

 Use of postprocessing command in ibaPDA to remote PCs

 Remote diagnostics with ibaDiag

Some settings should be considered in order to guarantee the proper function of
these services when all or some workstations run on Windows XP in a network:

1 If possible, the Windows login username, password and user rights
should be the same on all involved workstations, sharing these services.

2 If there are different logins used on the different workstations, the user
must be registered in the user administration of the participating work-
stations vice versa, including name, password and rights.

3 On every workstation the parameter Network access: Sharing and secu-
rity model for local accounts (in the Windows local security settings)
should be set on Classic.
You'll find this parameter under Windows XP Start menu Settings

Administrative Tools Local Security Policy Security Settings Local
Policies Security Options.

 © iba AG 2009

ibaLogic Manual Page 6-5

6

6.3 System configuration for ISA-cards
For setup of the ISA-driver configuration in ibaLogic select menu File ISA Con-
figuration

(This command is disabled in Windows XP when no ISA card had been detected.)

The following dialog opens:

Fig. 88 ISA-card configuration

Here, the hardware parameters are to be entered.

If you are using ISA-cards go to the tab "HW – ISA Bus" and enter the parameters
according to the hardware settings on the card(s).

Furthermore, the basic sample time has to be entered under the tab "General"
(default setting: 50 ms).

If you use, for example, a FOB-F card the settings must be done as follows:

 portFOBF = 1
 FOBF_AcqAddress = D8000
 Int_Vector = 5

Note: The settings are only valid in compliance with the hardware settings on the
card (bridges). For the first start of ibaLogic only the entries under the first tab
are required.

In order to save the settings, press the button "Save configuration". ibaLogic will
save the settings in the file iba_drv.cfg.

Restart ibaLogic to apply the changes.

 © iba AG 2009

Page 6-6 Manual ibaLogic

Fig. 89 ISA-card, check hardware settings

Check the hardware settings with the menu Hardware.

The card is working properly if the interrupt counter shows a rate of approxi-
mately 999 – 1001 interrupts per second.

If a connection has been established between the card and a connected Padu, the
red crosses will be replaced by a green checkmark √ at Opt. Link. 6

 © iba AG 2009

ibaLogic Manual Page 6-7

6

6.3.1. Recommended ISA hardware settings

Switch off your computer and unplug it from the power supply. Then open the
chassis of your computer. Therefore refer to the requirements written in your PC
manual.

The hardware components may be permanently damaged by electrostatic discharge. Use
the required safety precautions to handle hardware components.

There are several possible hardware configurations. A maximum of three cards is
supported. It is necessary to install the hardware as shown in the following table.
Note which card has to be selected as interrupt master (underlined and marked
red). Note that only 2 ID´s are supported for one card address! Note further that
the PCMCIA card is not supported! FOB-F can be replaced by FOB card.

Application Card 1 Card 2 Card 3

1 Simadyn access
Two SD connections

FOB SD *
CS22 address is
0xE0000 mostly

ID must be 0

- -

2 Simadyn access
3 or 4 SD connections

**

FOB SD *

Do not forget the
cascade connector!

CS22 address is
0xE0000 mostly

ID must be 0

FOB-SD
0xE0000;

ID = 1

FOB-SD
Not supported

3 Simadyn plus (several)
FOB´s

FOB SD *
CS22 address is
0xE0000 mostly

ID must be 0

FOB-F
0xDC000
ID = 0
No IR

FOB-F
0xDC000
ID = 1
No IR

4 Simadyn plus Profibus FOB SD *
CS22 address is
0xE0000 mostly

ID must be 0

L2B-F
Address: D8000

ID = 0
No IR

5 Simadyn plus Profibus
plus FOB

FOB SD *
CS22 address is
0xE0000 mostly

ID must be 0

L2B-F
Address: D8000

ID = 0
No IR

FOB-F
Address: DC000

ID = 0 or 1
No IR

6 Flatness PC or Profibus
application

L2B-F ***
Address: 0xD8000

ID = 0
Internal interrupt

- -

7 Flatness PC or Profibus
application

L2B-F ***
Address: 0xD8000

ID = 0
Internal interrupt

L2B-F ***
Address: 0xD8000

ID = 1
No IR

-

8 Flatness (or Profibus)
plus (several) FOB´s

L2B-F ***
Address: D80000

ID = 0
No IR

FOB-F
Address: DC000

ID = 0
External or Internal

IR

FOB-F
Address: DC000

ID = 1
No IR

9 Several FOB´s FOB-F
Address: 0xDC000

ID = 0
External or internal IR

FOB-F
Address: 0xDC000

ID = 1
No IR

FOB-F
Not supported

10 Notebook applications PCMCIA-F**** IR always- -
A 2/2 IO FOB can be handled like a FOB F. Note however, that the interrupt has to be set to INTERNAL only!

* To ensure proper function (i.e. FOB SD) make sure that Segment E is not used, because the FOB-SD card will use the whole
segment!

** More than one connection means that ibaLogic accesses different CS1x cards. It is not possible to hook up more than one
connection to a CS1x!

*** Check Profibus DP Slave address properly corresponding to programmed application (i.e. S7) and make sure the mode selec-
tion (S7 integer, flatness) is made correct (see also L2B manual). Only two flatness channels are supported by ibaLogic and
QDA! When configured as S7 DP Slave, the L2B acts like a FOB-F and must be treated correspondingly.

**** For software installation of PCMCIA-F see also PCMCIA_F manual.
 Never select address range CC000 because if the PC motherboard supports onboard SCSI these addresses might be in use!

 © iba AG 2009

Page 6-8 Manual ibaLogic

6

6.3.2. The Configuration File "iba_drv.cfg"

Before mounting the cards check the address entries and configure your hard-
ware with the addresses you find at your iba_drv.cfg printout:

....
portFOB = 0 // every "1" indicates that such a card is present in
portFOBF = 0 // the PC (here: FOB-IO)
portFOBSD = 0
portPROFI = 0
portFOBIO = 1
portASCIIOUT = 0
PCMCIA = 0
....
FOB_AcqAddress = 0xDC000 // for FOB cards
FOB_AcqLength = 0x440
FOBF_AcqAddress = 0xDC000 // for FOB-F cards
FOBF_AcqLength = 0x3100
FOBSD_AcqAdress = 0xE0000 // the FOBSD needs 64kbytes of memory !! check it!
PROFI_AcqAddress = 0xDc000 // for FOB L2B cards
PROFI_AcqLength = 0x440
PCMCIA = 0 // for PCMCI-F cards
CS22_BgtName = PDA001 // following parameters for FOB-SD and CS22 only !
CS22_AcqAddress = 0xD0000
Simadyn_Sync_Timeout = 15
Simadyn_Proc_Timeout = 15
CS22_0_OwnName = DPDA1A // all these parameters must be set for CS22 and
CS22_0_Partner = D0900B // FOB-SD accordingly
CS22_0_SoftwareVersion = V420
CS22_1_OwnName = DPDA2A
CS22_1_Partner = D0900B
CS22_1_SoftwareVersion = V420
CS22_2_OwnName = DPDA3A
CS22_2_Partner = D1200B
CS22_2_SoftwareVersion = V430
CS22_3_OwnName = DPDA4A
CS22_3_Partner = D1500B
CS22_3_SoftwareVersion = V430
CS22_Nboards = 0 // here only

and FOB IO cards also !!!!

 (!)the number of CS22 must be set

Note: Two FOB cards can have the same address but must then be „named“
with two different board ID´s (0 and 1 are possible and are supported by the
driver actually). At max 2 FOB cards can be installed within one PC. There must be
always one card with the ID 0 driving the process interrupt Therefore select ei-
ther Interrupt from connected PADU´s – in this case the interrupt-switch must be
turned in direction „outside“ of the PC, or use the card internal interrupt source –
then the switch must be in position directing „inside“ the PC. The first option has
the advantage that the optical link and the PADU is monitored. Any broken link is
immediately detected. In the case of a broken link the FOB will automatically
generate a „default“ interrupt but at a much lower frequency. If ibaLogic would
act strange online (very slow) the check if the connectivity is o.k. or if the PADU is
switched ON.

Note: The FOB 2/2 IO must be always configured with Interrupt internal to work
properly.

If you like to choose different addresses do not forget to modify the iba_drv.cfg
file correspondingly!

FOB-SD is an iba card. Note that the FOB SD always needs a free space of
64kbytes in your PC. Note further, that Windows diagnostics does not always
have the correct status of free memory. It can happen although the requested
memory block is marked as free by Windows while the block is not entirely free.

 © iba AG 2009

ibaLogic Manual Page 6-9

6

This would seriously affect the FOB SD operation. FOB-SD also must generate the
process interrupt.

Do not forget to check all the Simadyn parameters !

Fix all the necessary screws, close the PC rack, boot the PC and start ibaLogic.

6.3.3. System Configuration with PCI-Cards

The hardware installation of the cards is described in the documentation which
comes with the cards.

After the cards have been installed correctly in terms of PC Slots and PCI-
interrupt, start ibaLogic and check the system settings.

Under menu File System settings press first the button "Autoconfig" in order
to obtain the basic settings for the system.

Then check the different tabs and make sure that unused cards are disabled and
then configure the cards which are used. The dialog windows for the card con-
figuration can be opend by pressing the button Configuration... in the lower right
corner or by using the menu File PCI Configuration card. (see also chapter
2.5)

In case of using a FOB-SD / -TDC card, this card should be configured as interrupt
master.

 © iba AG 2009

ibaLogic Manual Page 7-1

7

7 Additional information and examples

7.1 Sample listing for DLL creation
Please note also the remarks in chapter 3.12.

Due to print-related technical reasons some lines in the following listing are
wrapped. Please read carefully.

7.1.1. dllForm.hpp

//**
//
// Filename: dllForm.hpp
//
// Author: Dipl.-Ing. Hubert Andris
//
// Created: 05-Sep-1998
//
// Description:
// Interface definition for DLL Forms.
//
// External Definitions:
// DLLExport compile for DLL export rather than for DLL
import
//
//**

#if !defined(DLLFORM_HPP)
#define DLLFORM_HPP

#if _MSC_VER >= 1000
#pragma once
#endif // _MSC_VER >= 1000

#include <windows.h>
#include <assert.h>

#if defined(DLLExport)
#define DLL __declspec(dllexport)
#else
#define DLL __declspec(dllimport)
#endif

#define DLL_INTERFACE_VERSION_HIGH (1 << 16)

//
// Define function prototypes for DLL functions used.
//
// Naming convention:
// PF<type><arg1><arg2>...
//
// where
// type = V returns void
// I returns int
// W returns DWORD
// S returns short
//
// arg#n = I arg#n is int
// = PI arg#n is pointer to unsigned int
// = PC arg#n is char pointer
// = PV arg#n is void pointer
//
typedef void (*PFV)(void);
typedef int (*PFI)(void);
typedef DWORD (*PFWV)(void);
typedef int (*PFII)(int io);
typedef short (*PFSII)(int io, int index);
typedef void (*PFVPV)(void *ptrData);
typedef void (*PFVPCI)(char *pName, int cbName);
typedef void (*PFVIIPCI)(int io, int index, char *pName, int
cbName);
typedef void (*PFVIIPVIPV)(int io, int index, void *ptrData, int
size,
 void *pInstanceData);
typedef void (*PFVIPVIIPV)(int index, void *ptrData, int size,
int valid,
 void *pInstanceData);
typedef int (*PFIIPVIPV)(int index, void *ptrData, int size,
 void *pInstanceData);
typedef void (*PFVIPVPI)(int cbSize, const void *pGlobal,
 const __int64 *pMilliSeconds);
typedef void (*PFVPVIPV)(const void *pGlobal, int cbSize,
 void *pInstanceData);
typedef DWORD (*PFWPVIPV)(const void *pGlobal, int cbSize,
 void *pInstanceData);

#define MAX_SERIAL_NO_LENGTH 12

typedef struct
{
 __int64 g_EvalTime;
 __int64 g_EvalDeltaTime;
 int g_Online;
 int g_Unlocked;
 DWORD g_System1;
 char g_DongleSerialNum[MAX_SERIAL_NO_LENGTH];

} globalVarType;

#if 0
//
// DllMain
//
// Called from operating system on load and unload.
//
extern DLL BOOL WINAPI DllMain(HINSTANCE hInstDLL, // handle
to DLL module
 DWORD fdwReason, // reason
for calling function
 LPVOID lpReserved); // reserved
#endif

//
// GetDllVersion
//
// Each Dll shall have a unique version number
//
// Returns:
// hiword major version number: describes the program
// interface
// loword minor version number: describes the semantic
//
extern DLL DWORD GetDllVersion(void);

//
// General parameters for subsequent functions:
//---
//
// Each instance of the Dll form has its own data pointer, which
// points to
// dynamicaly allocated memory of size returned by the previous
// call to
// GetInstanceDynamicDataSize().
//
// Parameter:
// void *pInstanceData
//
//--
//
// The Dll has read-only access to global variables of Signal
// Manager
// application, which may be required for the evaluation.
//
// Currently defined global variables:
//
//+--------+--+
//| offset | bytes | type | description |
//|--------+-------+---------+----------------------------------+
//| 0 | 8 | __int64 | time in 0.1 milliseconds |
//| | | | relative to last |
//| | | | InitEvaluation call |
//+--------+-------+---------+----------------------------------+
//| 8 | 8 | __int64 | time in 0.1 milliseconds |
//| | | | relative to last |
//| | | | call to Evaluate |
//+--------+-------+---------+----------------------------------+
//| 16 | 1 | char | = 0: layer is offline/ |
//| | | | = 1: layer is online |
//+--------+-------+---------+----------------------------------+
//| 17 | 3 | none | unused (all bytes 0) |
//+--------+-------+---------+----------------------------------+
//| 20 | 1 | char | = 0: layer is locked/ |
//| | | | = 1: layer is unlocked |
//| | | | If locked, DLL shall NOT change |
//| | | | any default value! |
//+--------+-------+---------+----------------------------------+
//| 21 | 3 | none | unused (all bytes 0) |
//+--------+-------+---------+----------------------------------+
//| 24 | 4 | DWORD | reserved |
//+--------+-------+---------+----------------------------------+
//| 28 | 12 | char | index 0 .. 7 : serial number |
//| | | | index 8 : = 0 |
//| | | | index 9 .. 11 : reserved |
//+--------+-------+---------+----------------------------------+
//
// Parameter:
// pGlobal pointer to global variables array
// cbSize number of available global variables
//
//

//
// GetInstanceDynamicDataSize
//

 © iba AG 2009

Page 7-2 Manual ibaLogic

7

// Each instance of the Dll formula has its own pointer, which
// may point to
// any data of any size. This function returns the size for that
// memory.
// Memory allocation/deallocation is completely performed by the
// calling
// application.
//
// Returns:
// required memory size in bytes
//
extern DLL int GetInstanceDynamicDataSize(void);

//
// GetDllDescription
//
// Parameter:
// pDesc buffer to receive description as ASCIIZ string
// cbDesc size of buffer (including terminating Null byte)
//
extern DLL void GetDllDescription(char *pDesc, int cbDesc);

//
// GetCount
//
// Parameter:
// io 0 = input, 1 = output
//
// Returns:
// number of inputs/outputs (1..128)
//
extern DLL int GetCount(int io);

//
// GetName
//
// Parameter:
// io 0 = input, 1 = output
// index 0..GetCount(io)-1
// pName buffer to receive name as ASCIIZ string
// cbName size of buffer (including terminating Null byte)
//
// Note: Each input/output name must to be unique!
//
extern DLL void GetName(int io, int index, char *pName, int
cbName);

//
// GetDescription
//
// Parameter:
// io 0 = input, 1 = output
// index 0..GetCount(io)-1
// pDesc buffer to receive description as ASCIIZ string
// cbDesc size of buffer (including terminating Null byte)
//
extern DLL void GetDescription(int io, int index, char *pDesc,
int cbDesc);

//
// GetType
//
// Parameter:
// io 0 = input, 1 = output
// index 0..GetCount(io)-1
//
// Returns:
//+-------+--------------+-------------------------------------+
//| type | iec1131 type | size of value in bytes
|
//+-------+--------------+-------------------------------------+
//| 1 | BOOL | 1 |
//| 3 | INT | 2 |
//| 4 | DINT | 4 |
//| 8 | UDINT | 4 |
//| 10 | REAL | 4 |
//| 11 | LREAL | 8 |
//| 12 | TIME | 8 |
//| 16 | STRING | 1024 (including terminating null) |
//| 19 | DWORD | 4 |
//| 22 | ARRAY | total element count * size |
//| | | of element |
//+-------+--------------+-------------------------------------+
//
// Note:
// Enumeration valType in 'value.hpp' can be used for
// convenience.
// If 22 (ARRAY) is returned, then a call to GetArrayHeader
// will follow.
//
extern DLL WORD GetType(int io, int index);

//
// GetArrayHeader
//
// Called if GetType() returned 22 (array type)
//
// Parameter:
// io 0 = input, 1 = output
// index 0..GetCount(io)-1
// pBuffer pointer to array header:
//+--------+------+--+
//| Offset | Type | Description |
//+--------+------+--+
//| 0 | WORD | Element type (see description of GetType) |
//| 2 | BYTE | reserved (e.g. for synchronization flag) |

//| 3 | BYTE | reserved (e.g. for valid flag) |
//| 4 | DWORD| array dimension (1..4) |
//| 8 | DWORD| Start Index of 0-th subscript |
//| 12 | DWORD| Stop Index of 0-th subscript |
//| ... | | |
//| 8+n*8 | DWORD| Start Index of n-th subscript |
//| | | (n < dimension) |
//| 12+n*8 | DWORD| Stop Index of n-th subscript |
//| | | (n < dimension) |
//| ... | | |
//+--------+------+--+
//
// cbBuf sizeof buffer in bytes sufficient for max array
// dimension of 4
//
// Note: These functions are only called once for initial
// initialization of
// the dll form instance.
// The total element count is calculated via:
// Sum over all subscripts: (n-th stop index - n-th start
// index + 1).
// For multi-dimensional arrays, the rightmost subscript is
// varying
// most rapidly with respect to the address offset of the
// element value.
// e.g.: a : ARRAY[1..2,2..4] OF INT;
// total element count = (2 - 1 + 1) + (4 - 2 + 1) = 6
// +---------+-----------------+
// | element | offset in bytes |
// +---------+-----------------+
// | a[1,2] | 0 * 2 = 0 |
// | a[1,3] | 1 * 2 = 2 |
// | a[1,4] | 2 * 2 = 4 |
// | a[2,2] | 3 * 2 = 6 |
// | a[2,3] | 4 * 2 = 8 |
// | a[2,4] | 5 * 2 = 10 |
// +---------+-----------------+
// For arrays, the only element types permitted are:
// BOOL, INT, DINT, UDINT, REAL, LREAL, TIME and DWORD.
//
extern DLL void GetArrayHeader(int io, int index, void *pBuffer,
int cbBuf);

//
// GetDefaultValue
//
// Parameter:
// io 0 = input, 1 = output
// index 0..GetCount(io)-1
// pBuffer pointer to buffer to receive value(s):
//+-------+--------------+-------------------------------------+
//| type | iec1131 type | size of buffer in bytes |
//+-------+--------------+-------------------------------------+
//| 1 | BOOL | 1 |
//| 3 | INT | 2 |
//| 4 | DINT | 4 |
//| 8 | UDINT | 4 |
//| 10 | REAL | 4 |
//| 11 | LREAL | 8 |
//| 12 | TIME | 8 |
//| 16 | STRING | 1024 (including terminating null) |
//| 19 | DWORD | 4 |
//| 22 | ARRAY | total element count * size |
//| | | of element |
//+-------+--------------+-------------------------------------+
// cbBuf sizeof buffer in bytes
// pInstanceData see description above
//
// Note: These functions are called once for initial
// initialization of the dll
// form instance (pInstanceData is NULL).
// For outputs, this function will be called if Evaluate()
// exited with
// bit0 of return value = 1 (pInstanceData is not NULL).
// For arrays, the only element types permitted are:
// BOOL, INT, DINT, UDINT, REAL, LREAL, TIME and DWORD.
//
extern DLL void GetDefaultValue(int io, int index, void *pBuffer,
int cbBuf,
 void *pInstanceData);

//
// SetInputValue
//
// This function is called once for each input index before each
// evaluation.
//
// Parameter:
// index 0..GetCount(1)-1
// pBuffer pointer to buffer to read value(s)
// It has the same format as described in
// GetDefaultValue
// cbBuf sizeof buffer in bytes
// bValid valid flag of value: 0 = valid, not 0 = invalid
//
extern DLL void SetInputValue(int index, void *pBuffer, int
cbBuf, BOOL bValid,
 void *pInstanceData);

//
// GetOutputValue
//
// This function is called once for each output index after each
// evaluation.
//
// Parameter:

 © iba AG 2009

ibaLogic Manual Page 7-3

7

// index 0..GetCount(1)-1
// pBuffer pointer to buffer to read value(s)
// It has the same format as described in
// GetDefaultValue
// cbBuf sizeof buffer in bytes
// pInstanceData see description above
//
// Returns:
// 0 if output value is invalid
// != 0 if output value is valid
//
extern DLL BOOL GetOutputValue(int index, void *pBuffer, int
cbBuf,
 void *pInstanceData);

//
// InitEvaluation
//
// Do specific initialization of any local data.
// Values are already set to their defaults.
//
// Parameter:
// pGlobal see description above
// cbSize see description above
// pInstanceData see description above
//
extern DLL void InitEvaluation(const void *pGlobal, int cbSize,
 void *pInstanceData);

//
// Evaluate
//
// Calculate all output values and their corresponding valid
// bits.
//
// Parameter:
// pGlobal see description above
// cbSize see description above
// pInstanceData see description above
//
// Returns:
// Bit0 = 1: DLL has changed default values
// (SET_DEFAULT function)
// causes call to GetDefaultValue() for all I/O's
// Bit1..31 = 0 (reserved)
//
extern DLL DWORD Evaluate(const void *pGlobal, int cbSize,
 void *pInstanceData);

//
// ExitEvaluation
//
// Called immediately before the dll form instance is removed.
// Do any form instance specific cleanup.
//
// E.g.: The memory set by SetInstanceDataPointer() may contaion
// another pointer to dynamically allocated memory in
// InitEvaluation(). Here is the point to deallocate that
// memory.
//
// Note: Do NOT deallocate the memory set by
// SetInstanceDataPointer()! This
// memory is managed by the calling application.
//
// Parameter:
// pGlobal see description above
// cbSize see description above
// pInstanceData see description above
//
extern DLL void ExitEvaluation(const void *pGlobal, int cbSize,
 void *pInstanceData);

#endif // DLLFORM_HPP

7.1.2. SampleDLL.cpp
//**
//
// Filename: sampleDll.cpp
//
// Author: Dipl.-Ing. Hubert Andris
//
// Created: 05-Sep-1998
//
// Description:
// Required definitions for specific DLL Formulas.
//
// External Definitions:
// DLLExport compile for DLL export rather than for DLL
// import
//
//**

#define DLLExport

#include "dllForm.hpp"

#define NUM_INPUTS 2
#define NUM_OUTPUTS 3
#define ARRAY_SIZE 10

static int nInstance = 0;

//
// data structure used for formula instance specific data
typedef struct dynamicData
{
 struct dynamicData()
 { memset(this, 0, sizeof(*this)); }

 BOOL inputValueValid[NUM_INPUTS];
 float inputValue[NUM_INPUTS][ARRAY_SIZE];
 float inputDefaultValue[NUM_INPUTS][ARRAY_SIZE];

 BOOL outputValueValid[NUM_OUTPUTS];
 float outputValue[1][ARRAY_SIZE];
 float outputDefaultValue[1][ARRAY_SIZE];

 char DongleId[9];

 int nInstance;
} dynamicDataType;

//
// Common data for all instances
static const char strDescription[] = "Sample DLL for ibaLogic
V1.2";
static const char strDongleDefault[] = "none";

static const char inputName[NUM_INPUTS][32] =
{
 "a",
 "b",
};

static const char outputName[NUM_OUTPUTS][32] =
{
 "out",
 "instance",
 "dongleNumber",
};

static const char inputDescription[NUM_INPUTS][32] =
{
 "1st input array",
 "2nd input array",
};

static const char outputDescription[NUM_OUTPUTS][32] =
{
 "dot product",
 "instance number",
 "Dongle Number",
};

//
// DllMain
//
// Called from operating system on load and unload.
//
DLL BOOL WINAPI DllMain(HINSTANCE hInstDLL, // handle to DLL
module
 DWORD fdwReason, // reason for
calling function
 LPVOID lpReserved) // reserved
{
 BOOL bRet = FALSE;

 // Perform actions based on the reason for calling.
 switch(fdwReason)
 {
 case DLL_PROCESS_ATTACH:
 // Initialize once for each new process.
 // Return FALSE to fail DLL load.
 bRet = TRUE; // Successful DLL_PROCESS_ATTACH.
 break;

 case DLL_THREAD_ATTACH:
 // Do thread-specific initialization.
 bRet = TRUE; // Successful DLL_THREAD_ATTACH.

 © iba AG 2009

Page 7-4 Manual ibaLogic

7

 break;

 case DLL_THREAD_DETACH:
 // Do thread-specific cleanup.
 bRet = TRUE; // Successful DLL_THREAD_DETACH.
 break;

 case DLL_PROCESS_DETACH:
 // Perform any necessary cleanup.
 bRet = TRUE; // Successful DLL_PROCESS_DETACH.
 break;
 }

 return bRet;
}

//
// GetDllVersion
//
// Each Dll shall have a unique version number
//
// Returns:
// hiword major version number: describes the program
// interface
// loword minor version number: describes the semantic
//
DLL DWORD GetDllVersion(void)
{
 return (DLL_INTERFACE_VERSION_HIGH | 1);
}

//
// General parameters for subsequent functions:
//---
//
// Each instance of the Dll form has its own data pointer,
// which points to dynamicaly allocated memory of size
// returned by the previous call to
// GetInstanceDynamicDataSize().
//
// Parameter:
// void *pInstanceData
//
//--
//
// The Dll has read-only access to global variables of Signal
// Manager
// application, which may be required for the evaluation.
//
// Currently defined global variables:
//
//+--------+---+
//| offset | bytes | type | description |
//|--------+-------+---------+---------------------------------+
//| 0 | 8 | __int64 | time in 0.1 milliseconds |
//| | | | relative to last |
//| | | | InitEvaluation call |
//+--------+-------+---------+---------------------------------+
//| 8 | 8 | __int64 | time in 0.1 milliseconds |
//| | | | relative to last |
//| | | | call to Evaluate |
//+--------+-------+---------+---------------------------------+
//| 16 | 1 | char | = 0: layer is offline/ |
//| | | | = 1: layer is online |
//+--------+-------+---------+---------------------------------+
//| 17 | 3 | none | unused (all bytes 0) |
//+--------+-------+---------+---------------------------------+
//| 20 | 1 | char | = 0: layer is locked/ |
//| | | | = 1: layer is unlocked |
//| | | | If locked, DLL shall NOT change |
//| | | | any default value! |
//+--------+-------+---------+---------------------------------+
//| 21 | 3 | none | unused (all bytes 0) |
//+--------+-------+---------+---------------------------------+
//| 24 | 4 | DWORD | reserved |
//+--------+-------+---------+---------------------------------+
//
// Parameter:
// pGlobal pointer to global variables array
// cbSize number of available global variables
//
//

//
// GetInstanceDynamicDataSize
//
// Each instance of the Dll formula has its own pointer,
// which may point to any data of any size. This function
// returns the size for that memory.
// Memory allocation/deallocation is completely performed by
// the calling application.
//
// Returns:
// required memory size in bytes
//
DLL int GetInstanceDynamicDataSize(void)
{
 return sizeof(dynamicDataType);
}

//
// GetDllDescription
//
// Parameter:
// pDesc buffer to receive description as ASCIIZ string
// cbDesc size of buffer (including terminating Null byte)
//

DLL void GetDllDescription(char *pDesc, int cbDesc)
{
 strncpy(pDesc, strDescription, cbDesc);
}

//
// GetCount
//
// Parameter:
// io 0 = input, 1 = output
//
// Returns:
// number of inputs/outputs (1..128)
//
DLL int GetCount(int io)
{
 int iRet;

 if (io == 0)
 {
 iRet = NUM_INPUTS;
 }
 else
 {
 iRet = NUM_OUTPUTS;
 }

 return iRet;
}

//
// GetName
//
// Parameter:
// io 0 = input, 1 = output
// index 0..GetCount(io)-1
// pName buffer to receive name as ASCIIZ string
// cbName size of buffer (including terminating Null byte)
//
// Note: Each input/output name must to be unique!
//
DLL void GetName(int io, int index, char *pName, int cbName)
{
 if (io == 0)
 {
 strncpy(pName, inputName[index], cbName);
 }
 else
 {
 strncpy(pName, outputName[index], cbName);
 }
}

//
// GetDescription
//
// Parameter:
// io 0 = input, 1 = output
// index 0..GetCount(io)-1
// pDesc buffer to receive description as ASCIIZ string
// cbDesc size of buffer (including terminating Null byte)
//
DLL void GetDescription(int io, int index, char *pDesc, int
cbDesc)
{
 if (io == 0)
 {
 strncpy(pDesc, inputDescription[index], cbDesc);
 }
 else
 {
 strncpy(pDesc, outputDescription[index], cbDesc);
 }
}

//
// GetType
//
// Parameter:
// io 0 = input, 1 = output
// index 0..GetCount(io)-1
//
// Returns:
//+-------+--------------+-------------------------------------+
//| type | iec1131 type | size of value in bytes |
//+-------+--------------+-------------------------------------+
//| 1 | BOOL | 1 |
//| 3 | INT | 2 |
//| 4 | DINT | 4 |
//| 8 | UDINT | 4 |
//| 10 | REAL | 4 |
//| 11 | LREAL | 8 |
//| 12 | TIME | 8 |
//| 16 | STRING | 1024 (including terminating null) |
//| 19 | DWORD | 4 |
//| 22 | ARRAY | total element count * size of |
//| | | element |
//+-------+--------------+-------------------------------------+
//
// Note:
// Enumeration valType in 'value.hpp' can be used for
// convenience.
// If 22 (ARRAY) is returned, then a call to GetArrayHeader
// will follow.
//
DLL WORD GetType(int io, int index)

 © iba AG 2009

ibaLogic Manual Page 7-5

7

{
 WORD wRet = 22; // all inputs/outputs are arrays

 if (io == 1)
 {
 if (index == 1)
 wRet = 4;
 if (index == 2)
 wRet = 16;
 if (index == 3)
 wRet = 1;
 }

 return wRet;
}

//
// GetArrayHeader
//
// Called if GetType() returned 22 (array type)
//
// Parameter:
// io 0 = input, 1 = output
// index 0..GetCount(io)-1
// pBuffer pointer to array header:
//+--------+------+--+
//| Offset | Type | Description |
//+--------+------+--+
//| 0 | WORD | Element type (see description of GetType) |
//| 2 | BYTE | reserved (e.g. for synchronization flag) |
//| 3 | BYTE | reserved (e.g. for valid flag) |
//| 4 | DWORD| array dimension (1..4) |
//| 8 | DWORD| Start Index of 0-th subscript |
//| 12 | DWORD| Stop Index of 0-th subscript |
//| ... | | |
//| 8+n*8 | DWORD| Start Index of n-th subscript |
//| | | (n < dimension) |
//| 12+n*8 | DWORD| Stop Index of n-th subscript |
//| | | n < dimension) |
//| ... | | |
//+--------+------+--+
//
// cbBuf sizeof buffer in bytes sufficient for max array
// dimension of 4
//
// Note: These functions are only called once for initial
// initialization of the dll form instance.
// The total element count is calculated via:
// Sum over all subscripts: (n-th stop index - n-th start
// index + 1).
// For multi-dimensional arrays, the rightmost subscript
// is varying most rapidly with respect to the address
// offset of the element value.
// e.g.: a : ARRAY[1..2,2..4] OF INT;
// total element count = (2 - 1 + 1) + (4 - 2 + 1) = 6
// +---------+-----------------+
// | element | offset in bytes |
// +---------+-----------------+
// | a[1,2] | 0 * 2 = 0 |
// | a[1,3] | 1 * 2 = 2 |
// | a[1,4] | 2 * 2 = 4 |
// | a[2,2] | 3 * 2 = 6 |
// | a[2,3] | 4 * 2 = 8 |
// | a[2,4] | 5 * 2 = 10 |
// +---------+-----------------+
// For arrays, the only element types permitted are:
// BOOL, INT, DINT, UDINT, REAL, LREAL, TIME and DWORD.
//
DLL void GetArrayHeader(int io, int index, void *pBuffer, int
cbBuf)
{ // all inputs/outputs are arrays of the same type
 ((WORD *) pBuffer)[0] = 10; // element type is
REAL
 ((DWORD *) pBuffer)[1] = 1; // dimension
 ((DWORD *) pBuffer)[2] = 0; // start index 0-th
subscript
 ((DWORD *) pBuffer)[3] = ARRAY_SIZE - 1; // stop index 0-th
subscript
}

//
// GetDefaultValue
//
// Parameter:
// io 0 = input, 1 = output
// index 0..GetCount(io)-1
// pBuffer pointer to buffer to receive value(s):
//+-------+--------------+-------------------------------------+
//| type | iec1131 type | size of buffer in bytes |
//+-------+--------------+-------------------------------------+
//| 1 | BOOL | 1 |
//| 3 | INT | 2 |
//| 4 | DINT | 4 |
//| 8 | UDINT | 4 |
//| 10 | REAL | 4 |
//| 11 | LREAL | 8 |
//| 12 | TIME | 8 |
//| 16 | STRING | 1024 (including terminating null) |
//| 19 | DWORD | 4 |
//| 22 | ARRAY | total element count * size of |
//| | | element |
//+-------+--------------+-------------------------------------+
// cbBuf sizeof buffer in bytes
// pInstanceData see description above
//
// Note: These functions are called once for initial
// initialization of the dll form instance
// (pInstanceData is NULL).

// For outputs, this function will be called if
// Evaluate() exited with bit0 of return value = 1
// (pInstanceData is not NULL).
// For arrays, the only element types permitted are:
// BOOL, INT, DINT, UDINT, REAL, LREAL, TIME and DWORD.
//
DLL void GetDefaultValue(int io, int index, void *pBuffer, int
cbBuf,
 void *pInstanceData)
{ // all inputs/outputs same type and defaults
 int i;

 if ((io == 1) && (index == 1))
 {
 *((int *) pBuffer) = 0;
 }
 else if ((io == 1) && (index == 2))
 {
 strcpy((char *) pBuffer,strDongleDefault);
 }
 else if ((io == 1) && (index == 3))
 {
 *((BOOL *) pBuffer) = FALSE;
 }
 else
 {
 for (i = 0; i < ARRAY_SIZE; ++i)
 { // for multiplication, default 1 is convenient
 ((float *) pBuffer)[i] = 1.0;
 }
 }
}

//
// SetInputValue
//
// This function is called once for each input index before
// each evaluation.
//
// Parameter:
// index 0..GetCount(1)-1
// pBuffer pointer to buffer to read value(s)
// It has the same format as described in
// GetDefaultValue
// cbBuf sizeof buffer in bytes
// bValid valid flag of value: 0 = valid, not 0 = invalid
//
DLL void SetInputValue(int index, void *pBuffer, int cbBuf, BOOL
bValid,
 void *pInstanceData)
{
 dynamicDataType *pData = (dynamicDataType *) pInstanceData;

 if (pData != NULL)
 {
 pData->inputValueValid[index] = bValid;

 assert(cbBuf == sizeof(pData->inputValue[index]));
 memcpy(pData->inputValue[index], pBuffer, sizeof(pData-
>inputValue[index]));
 }
}

//
// GetOutputValue
//
// This function is called once for each output index after
// each evaluation.
//
// Parameter:
// index 0..GetCount(1)-1
// pBuffer pointer to buffer to read value(s)
// It has the same format as described in
// GetDefaultValue
// cbBuf sizeof buffer in bytes
// pInstanceData see description above
//
// Returns:
// 0 if output value is invalid
// != 0 if output value is valid
//
DLL BOOL GetOutputValue(int index, void *pBuffer, int cbBuf,
 void *pInstanceData)
{
 BOOL bRet = FALSE; // default invalid
 dynamicDataType *pData = (dynamicDataType *) pInstanceData;

 assert(pData != NULL);
 if (pData != NULL)
 {
 if (pData->outputValueValid[index])
 {
 switch (index)
 {
 case 0:
 memcpy(pBuffer, pData->outputValue[index],
sizeof(pData->outputValue[index]));
 break;
 case 1:
 memcpy(pBuffer, &pData->nInstance, sizeof(pData-
>nInstance));
 break;
 case 2:
 memcpy(pBuffer, &pData->DongleId, 9);//strlen(pData-
>DongleId));
 break;
 default:

 © iba AG 2009

Page 7-6 Manual ibaLogic

7

 pData->outputValueValid[index] = FALSE;
 }

 bRet = TRUE;
 }
 }

 return bRet;
}

//
// InitEvaluation
//
// Do specific initialization of any local data.
// Values are already set to their defaults.
//
// Parameter:
// pGlobal see description above
// cbSize see description above
// pInstanceData see description above
//
DLL void InitEvaluation(const void *pGlobal, int cbSize, void
*pInstanceData)
{
 globalVarType *pGlobals = (globalVarType *) pGlobal;
 dynamicDataType *pData = (dynamicDataType *) pInstanceData;

 assert(pGlobals != NULL);
 assert(pData != NULL);

 if (pData != NULL)
 {
 memcpy(pData->DongleId,pGlobals->g_DongleSerialNum,9);
 pData->DongleId[8]=0;
// pData->DongleHasLogic = DongleHasLogic();
 pData->nInstance = nInstance++;

 pData->outputValueValid[1] = TRUE;
 pData->outputValueValid[2] = TRUE;
 pData->outputValueValid[3] = TRUE;
 if (memcmp(pData->DongleId,"999999",6) != 0)
 {
 pData->outputValueValid[0] = FALSE;
 }
 }
}

//
// Evaluate
//
// Calculate all output values and their corresponding valid
// bits.
// In this sample DLL each output value has a corresponding value
// in outputValueValid to indicate if the value is valid or
// invalid.
// If outputValueValid[] is FALSE, GetOutputValue() will return
// FALSE to ibaLogic, the Output will be marked as invalid and
// the data will not be updated.
//
// Parameter:
// pGlobal see description above
// cbSize see description above
// pInstanceData see description above
//
// Returns:
// Bit0 = 1: DLL has changed default values
/ (SET_DEFAULT function)
// causes call to GetDefaultValue() for all I/O's
// Bit1..31 = 0 (reserved)
//
DLL DWORD Evaluate(const void *pGlobal, int cbSize, void
*pInstanceData)
{
 globalVarType *pGlobals = (globalVarType *) pGlobal;
 dynamicDataType *pData = (dynamicDataType *) pInstanceData;

 assert(pGlobals != NULL);
 assert(pData != NULL);

 if (pData != NULL)
 {
 memcpy(pData->DongleId,pGlobals->g_DongleSerialNum,9);
 pData->DongleId[8]=0;
 if (memcmp(pData->DongleId,"00999999",8) != 0)
 {
 pData->outputValueValid[0] = FALSE;
 }
 else
 {
 pData->outputValueValid[0] = pData->inputValueValid[0] &&
pData->inputValueValid[1];
 }

 if (pData->outputValueValid[0])
 {
 int i;

 for (i = 0; i < ARRAY_SIZE; ++i)
 {
 pData->outputValue[0][i] = pData->inputValue[0][i] * pDa-
ta->inputValue[1][i];
 }
 }
 }

 return 0;
}

//
// ExitEvaluation
//
// Called immediately before the dll form instance is removed.
// Do any form instance specific cleanup.
//
// E.g.: The memory set by SetInstanceDataPointer() may contaion
// another pointer to dynamically allocated memory in
// InitEvaluation(). Here is
// the point to deallocate that memory.
//
// Note: Do NOT deallocate the memory set by
// SetInstanceDataPointer()! This memory is managed by
// the calling application.
//
// Parameter:
// pGlobal see description above
// cbSize see description above
// pInstanceData see description above
//
DLL void ExitEvaluation(const void *pGlobal, int cbSize, void
*pInstanceData)
{
 globalVarType *pGlobals = (globalVarType *) pGlobal;
 dynamicDataType *pData = (dynamicDataType *) pInstanceData;

 assert(pGlobals != NULL);
 assert(pData != NULL);
 assert(pData->nInstance >= 0);
}

7.1.3. SampleDLL.def
LIBRARY sampleDll

VERSION 1.2
DESCRIPTION "Sample form DLL"

EXETYPE WINDOWS

EXPORTS
 DllMain @1

 GetDllVersion @2
 GetInstanceDynamicDataSize @3

 GetCount @4

 GetDllDescription @5

 GetName @6
 GetDescription @7

 GetType @8
 GetArrayHeader @9

 GetDefaultValue @10

 SetInputValue @11
 GetOutputValue @12

 InitEvaluation @13
 Evaluate @14
 ExitEvaluation @15

 © iba AG 2009

ibaLogic Manual Page 7-7

7

7.2 List of reserved names by ibaLogic
Ther are some names of functions and procedures which are reserved exclusively
by ibaLogic. When trying to use such names for naming new FBs, connectors of
FBs, OTCs, IPCs, macro blocks or tasks, an error message will appear.

Please refer to the table below in order to avoid such conflicts.

reserved names by ibaLogic

add_dt_time

add_time

add_tod_time

concat_d_tod

divtime

dt_to_date

dt_to_tod

multime

pi

pid

pidt1

pt1

pt2

ramp

sub_date_date

sub_dt_dt

sub_dt_time

sub_time

sub_tod_time

sub_tod_tod

 © iba AG 2009

Page 8-8 Manual ibaLogic

7

8 Support and Contact

For technical support or sales information, please contact your local iba represen-
tative or call the following numbers:

Telephone: +49 911 97282-14

Fax: +49 911 97282-33

Email: support@iba-ag.com

For downloads of the latest software versions as well as hardware and software
manuals please use our web-site at: http://www.iba-ag.com/

Any feedback, comments or tips on errata in this documentation or suggestions
for improvement will be appreciated. Simply send an e-mail or fax to us, thank
you for your support.

Headquarters

iba AG
Koenigswarterstrasse 44
90762 Fuerth / Bayern
Germany
Tel.: +49 (911) 97282-13
Fax: +49 (911) 97282-33
Contact: Harald Opel
iba@iba-ag.com

Belgium,
Luxembourg,
Netherlands,
France, Spain
Great Britain

IBA-Benelux BVBA
Rivierstraat 64
B-9080 Lochristi
Belgium
Tel.: +32 9 226 2304
Fax: +32 9 226 2902
Contact: Roeland Struye
roeland.struye@iba-benelux.com

North America,
US Territories,
Caribbean, Ber-
muda

iba America, LLC
6845 Shiloh Road East,
Suite D-7
Alpharetta, GA 30005
USA
Tel.: +1 (770) 886-2318
Fax: +1 (770) 886-9258
Contact: Scott Bouchillon
sb@iba-america.com

Venezuela &
South America

iba LAT, S.A.
C.C San Miguel 1, Piso 1, Oficina 1.
Calle Neveri, Redoma de Harbor
YV 8050 Puerto Ordaz
Venezuela
Contakt: Eric Di Luzio
Tel.: + 58 (286) 951 9666
Fax.: + 58 (286) 951 2915
Cel.: + 58 (414) 386 0427
eric.di.luzio@iba-ag.com

ibaChina,
ibaKorea,
ibaIndia,
ibaIndonesia
ibaMalaysia,
ibaThailand

ibaASIA GmbH & Co. KG
Saturnstrasse 32
90522 Oberasbach
Germany
Tel.: +49 (911) 969 4346
Fax: +49 (911) 969 4351
Contact: Mario Gansen
iba@iba-asia.com

 © iba AG 2009

ibaLogic Manual Page I

A

Glossary

Configuration
A configuration is, e.g., a plc rack with processor and I/O-
cards or an ibaLogic-PC. The components are able to
communicate with each other.

*.csv
Comma separated value; general term for ASCII- or text
files with columns of values or entries. The columns are
separated by a mutual separation character. Typical sepa-
ration characters are comma (,), semicolon (;) or the TAB
character. Spreadsheet programs such as MS Excel may
import or export these files.

Evaluation mode
During the programming in ibaLogic it is possible to
switch over at any time without waiting in the evaluation
mode for test and diagostic purposes. The correct function
of a program can be tested quickly by this feature. In the
evaluation mode no outputs are set to the process.

Function
Subroutine, which can have any input parameter but re-
turns only one result. Functions return always the same re-
sult for the same input parametrization (no memory ef-
fect).

Function block
Function blocks can have many but clearly defined in- and
output parameters and they can use internal variables
(memory), e.g. PID-regulator.

Instruction List (IL)
Assembler-like programming language for plcs, standard-
ized by IEC 1131-3.

HOT SWAP
Feature of ibaLogic. If this feature is enabled ibaLogic cre-
ates a copy of the current project. This copied program
can be evaluated in the HOTSWAP layer. A synchronized
switch-over between HOTSWAP and online layer enables
the user to perform even larger program modifications
and finally activate them.

IEC 1131
International standard, consists of five parts. Particularly
the part 3 (IEC 1131-3) is about programming languages
for plc.

In- / Output resource
In- and output channels (signals) of ibaLogic are called "I/O
resources.

Online mode
In online mode the inputs and outputs of the program
from / to the process are enabled. The online mode is indi-
cated in ibaLogic by a purple background color of the
programming screen.

Plc
Programable Logic Controller; device that controls, regu-
lates and monitors a process. It usually consists of a rack

or frame with different components, such as CPU, in-
/output cards, software etc.

POU
Program Organization Unit, according to IEC 61131-3 it is
a program, a function block or a function.

Program
Standard term; programs are the "containers" for con-
nected functions and function blocks. A program can be
written in any of the programming languages which are
defined in IEC 1131-3. Programs are always assigned to a
task of a certain cycle time base.

Resource (project)
Standard term; a resource is a part of a configuration. A
configuration can consist of one or more resources. A re-
source is always assigned to one CPU only. One CPU can
cover several resources.In ibaLogic there is always one re-
source per PC which is called "layout" (application).

Sequence
Control procedure, which processes single separated steps
in a defined sequence. Only one step is activ at a time. SFC
(Sequential Function Chart) is used for programming.

SFC
Sequential Function Chart; type of programming language
according to IEC 61131-3 for sequence controls.

Soft-plc
A plc (Programable Logic Controller) which is working on
a PC base. It consists of a PC, the required control applica-
tion software and the I/O components.

Structured Text (ST)
Programming language according to IEC 1131-3, very
similar to the standard language PASCAL.

Task
One or more tasks can be assigned to one resource. A task
has an explicitly defined time behavior (period), e.g. 20
ms, 100 ms etc. One or more jobs with a common time
base can be part of a task.

 © iba AG 2009

ibaLogic Manual Page III

B

References

[1] IEC 1131-3: a standard programming resource http://www.plcopen.org/intro_nw.htm
[2] Karl Pusch, Grundkurs IEC1131, Vogel Verlag, 1. Auflage, 1999
[3] E.Grötsch, SPS1 Speicherprogrammierbare Steuerungen, Oldenbourg Verlag,

4. Auflage, 2000
[4] OPC-Foundation: OLE for Process Controls OPC Common Definitions and Interfaces V1.0
[5] OPC-Foundation: Data Access Automation Interface Standard V 2.02

 © iba AG 2009

ibaLogic Manual Page V

C

Index

3
3964.. 2-32

A
analytic functions .. 4-30
arithmetic functions 4-2
ARRAY ... 1-5
asynchronous mode (FOB IO)....................... 2-43
autoscroll... 2-25

B
basic FBs .. 4-21
basic functions .. 4-2
binary register ... 4-23
bit-shift functions .. 4-18
BOOL ... 1-5
branches.. 3-16
buffered mode... 2-40

C
Ch32Analyzer .. 4-37
Ch4Oscilloscope... 4-37
CH4Oscilloscope .. 3-37
communication functions 4-32
comparison functions 4-20
configuration file ... 6-8
configuration path....................................... 2-22
connection lines... 3-15
conversion rules... 4-6
conversions.. 2-27
convert data structure 4-14
converting functions............................... 4-7, 4-8
correlation ... 4-35
counter.. 4-26
CSV-Technostring .. 5-13
cursors... 4-35

D
data source (playback)................................. 2-28
datatypes... 1-5

conversion.. 4-6
default value type 2-24

DatFileCleanup....................................4-38, 4-49
DatFileWrite..4-38, 4-44
Daylight Saving Time 5-17
default arraytype ... 2-24
device manager ... 2-21
DigFilt ...4-36, 4-42
DINT .. 1-5
distortion... 4-35
distribute objects ... 2-26
DLL

global... 4-51
local ... 4-52
sample_dll .. 7-1

drag & drop ... 3-13
DWORD ... 1-5

E
eCon ..2-33, 5-14, 5-33
eCon/PPIO IN.. 5-14
eCon/PPIO OUT .. 5-33
edge detection... 4-25
evaluation [%]...3-1, 3-3
evaluation statistic... 3-4
evaluation timeout 2-22
explode.. 2-11

F
feedback loops .. 2-23
FIFO ... 4-23
filter (DigFilt).. 4-36
FOB 4i .. 5-2
FOB 4o... 5-19
FOB IO ... 2-35
FOB-F ... 5-2
FOB-F buffered mode..................................... 5-4
FOB-F Buffered Mode................................... 5-21
FOB-F OUT Buffered Mode........................... 5-21
FOB-IO ..5-2, 5-19
FOB-IO-PCI Link settings............................... 2-41
FOB-M ... 2-35
Fob-M mode.. 2-41
FOBM/IN .. 5-8
FOB-M-PCI Link settings 2-44
FOB-SD .. 5-5
FOB-SD/FOB-TDC OUT 5-21
FOB-SD/TDC Link settings............................. 2-46
FOB-SD-PCI ..2-36
FOB-TDC ...2-36, 5-5
function... 4-1
function block...1-5, 4-1

combining.. 3-22
connection ... 3-15
create ... 3-30
PT1 ... 3-29
selection... 3-14

 © iba AG 2009

Page VI Manual ibaLogic

C

G
generator .. 5-16
global DLL ... 4-51
global FBs.. 4-51
global resource path.................................... 2-22
global variables ... 4-50
globale macros .. 4-51

H
hot keys... 2-7
hot-swap ... 3-2

I
iba_drv.cfg .. 6-8
ibaDiag.. 2-20
IEC 1131...1-4
implode ... 2-10
input resources.. 5-1
input signal margin 2-5
Inscription ... 3-46
Installation .. 6-1
INT... 1-5
interrupt.. 2-30
invalid... 2-31, 3-12
IPC... 3-17
ISA-card hardware settings............................ 6-7
ISA-configuration .. 6-5
ISA-Diagnose ... 2-21

L
L2B .. 2-37
L2B – card configuration 5-9
L2B 5136 ... 2-38
L2B-PCI Slave settings.................................. 2-45
L2Bx/2 flatness... 5-9
layout settings... 2-25
limiting converters....................................... 4-11
local DLLs .. 4-52
local FBs .. 4-52
local macros .. 4-52
logfile .. 2-22
logic_AcqRestartCount 4-50
logic_EvalDeltaTime..................................... 4-50
logic_EvalTime... 4-50
logic_Online .. 4-50
logic_Unlocked .. 4-50
logical analyzer.. 3-37
logical operations .. 4-18
LREAL .. 1-5

M
macro block... 3-22

connectors ... 2-25
create... 3-22
edit .. 3-23
modify ... 3-22

menu
edit .. 2-10
evaluate ... 2-14
file.. 2-9
hardware ... 2-20
help.. 2-21
Hot Swap ... 2-16
layout... 2-15
TechnoString.. 2-17
view ... 2-12

min-/max functions...................................... 4-19
Mode (FOB IO)... 2-42
module assignment 3-8
mouse keys.. 2-8
multichannel oscilloscope............................ 3-37

N
naming restriction ... 7-7

O
OffTask connector 3-19
online modifications...................................... 3-1
OPC-connectors ... 2-25
OPC-diagnostics... 5-40
OPC-DLLs ... 5-36
operations for FB-creation 3-25
operations in ST... 3-27
oscilloscope .. 3-37, 4-37
OTC ... 3-19
output resources ... 5-18
output signal margin..................................... 2-5

P
Padu8-ICP .. 5-8
Padu8-M.. 5-8
Parallel... 2-33
password... 3-1
PCI configuration... 2-41
PCI-board .. 2-30
PCI-cards.. 6-9
PCMCIA-F .. 2-40
PIDT1-controller... 4-39
playback ... 2-28, 3-7

inputs (PlaybackIn) 5-15
mode .. 2-30, 3-7
module assignment.................................... 3-8
output (Playback OUT) 5-34

 © iba AG 2009

ibaLogic Manual Page VII

C

print .. 3-46
printed pages .. 3-46
printer functions.. 3-46
printer settings .. 3-47
program area... 2-5
program settings ... 2-22

R
ramp.. 4-41
REAL .. 1-5
receiver format .. 2-42
Reflective Memory 2-39

card settings .. 2-48
input resources .. 5-10
output resources 5-32

register .. 4-22
repeat mode (playback) 2-28
replay mode (playback)................................ 2-28
reserved names.. 7-7
resources ... 2-12

area.. 2-5
description ... 3-6
naming... 3-6
selection... 2-5

restrictions... 3-1
rfft ... 4-35
right mousebutton 3-13
RM.. 2-39, 5-10

S
sample_dll ... 7-1
samplingtime... 2-30
save ... 2-9
scaling converters .. 4-13
screen .. 2-5
security settings... 6-4
select time ranges (playback)....................... 2-28
selection functions....................................... 4-19
shift-register .. 4-23
showString .. 4-38
signal manager mode 2-30, 3-7
signal processing ... 4-35
SIMADYN-D TechnoString.............................. 5-5
slider... 3-21, 4-38
soft-PLC mode ... 3-7
Soft-PLC mode... 2-30
ST .. 3-26
STRING... 1-5
string functions ... 4-16
Structured Text .. 3-26

CASE .. 3-31
EXIT.. 3-32
FOR .. 3-32
IF / ELSIF ... 3-31
RETURN .. 3-32

switch... 3-21, 4-37
system configuration

ISA-cards .. 6-5
PCI-cards .. 6-9

system settings
FOB IO / FOB-M .. 2-35
FOB-TDC / FOB-SD-PCI 2-36
general ... 2-30
L2B... 2-37
L2B 5136.. 2-38
other .. 2-32
parallel ... 2-33
Reflective Memory.................................... 2-39

System UTC Time ... 5-17

T
task

configure.. 3-13
order of processing 3-4
selection... 2-6
settings .. 3-13
size... 3-13

TCP/IP... 5-11
activate .. 2-32
TCP/IP Out Techno.................................... 5-25
TcpIp Test.exe... 2-19
TechnoString .. 5-11

TCP/IP Out settings....................................... 2-50
TCPIP_SendRecv ...4-34
TechnoString2-17, 5-11, 5-25
Termination ... 5-26
TIME .. 1-5
time trigger mask .. 2-42
timer.. 4-27
tool bar.. 2-7
transmitter format 2-42
turbo mode ..2-30, 3-7
type conversion ... 4-6

U
UDINT .. 1-5
unavailable signals..............................2-31, 3-12
USB dongle .. 6-2
UTC-Time ... 5-17

V
Validate ... 4-38
values ...2-13, 2-25
Visual Basic .. 5-38

W
watchdog .. 2-30
Windows NT .. 6-2
Windows XP .. 6-4

Z
zero mask .. 5-33
Zero Mask.. 2-33
zero on device 0 .. 2-33
zeros on broken links................................... 2-31
zeros on broken links................................... 3-12

 © iba AG 2009

Page VIII Manual ibaLogic

C

 © iba AG 2009

	Welcome to ibaLogic
	Introduction
	System properties of ibaLogic in brief
	The plc programming languages according to IEC 1131-3
	IEC 61131-3 software model
	IEC 61131 program organization units (POU)
	Supported datatypes

	Operation and setup
	Getting started
	ibaLogic-V3
	ibaLogic-V3-Runtime
	Start ibaLogic with the command line

	ibaLogic user interface
	Tool bar
	Hot keys
	Combinations of mouse keys and keyboard

	ibaLogic menu bar
	"File" menu
	"Edit" menu
	"View" menu
	"Evaluate" menu
	"Layout" menu
	"Hot Swap" menu
	"Technostring" menu
	"Hardware" menu
	"Help" menu

	Program settings
	Menu (File (Program Settings (General
	Menu (File (Program Settings (Edit
	Menu (File (Programm Settings (Conversions
	Menu (Files (Program Settings (Playback

	System settings
	Menu (File (System settings (General
	Menu (File (System settings (Other
	Menu (File (System settings (Parallel
	Menu (File (System settings (FOB IO / FOB-M
	Menu (File (System settings (FOB-TDC / FOB-SD-PCI
	Menu (File (System settings (L2B
	Menu (File (System settings (L2B 5136
	Menu (File (System settings (Reflective Memory
	Menu (File (System settings (PCMCIAF

	PCI configuration
	FOB-IO-PCI Link settings
	Characteristics of the asynchronous mode

	FOB-M-PCI Link settings
	L2B-PCI Slave settings
	FOB-SD / TDC Link settings
	Reflective Memory Card settings
	TCP/IP Out settings

	Working with ibaLogic
	System limits and boundary conditions
	Important terms and functions
	Which tasks should run how fast – and what does it mean?
	Relation between task cycle, processing time and evaluation%
	Order of task processing

	The I/O system of ibaLogic
	Identification and naming of I/O resources

	Modes of operation of ibaLogic
	Signal Manager
	Soft-PLC
	Turbo Mode
	Playback
	Using the playback function
	Module assignment for playback

	Fault management
	Zeros on broken links
	Unavailable signals are invalid

	ibaLogic handling
	Drag & drop
	Right mousebutton
	Adjust the size of the program area of a task

	Selection and connection of function blocks
	Connection lines and branching
	IntraPage connectors (IPC)
	Off-Task connectors and OPC-connections
	Switch and slider - smart helpers for testing

	Combining objects and creating macros
	Creation of a new function block
	Creating a function block without Structured Text (ST)
	Operations for simple FB-creation

	Creating a function block with Structured Text (ST)
	Operations and statements in Structured Text (ST)
	Data declarations in Structured Text (ST)
	Statements in Structured Text (ST)
	Function block PT1 in Structured Text (ST)

	Examples for statements in Structured Text (ST)
	IF- and ELSIF-statement
	CASE-statement
	FOR-statement
	EXIT- and RETURN-statement

	Creating your own DLL
	C-Compiler
	Source files needed for creating DLLs
	Procedure for creating new DLLs
	Frequent obstacles
	Linking the DLL in ibaLogic

	Testing and debugging of projects
	Single and multiple step mode, halt the project
	What to do, if values become sporadically invalid?
	The ordinary oscilloscope for testing
	The Multichannel Oscilloscope and Logical Analyzer
	Usage
	Operation
	Sample application for multichannel oscilloscope and rfft fu

	Save the project against unintended changes
	Password protection and other protecting measures
	The Hot-Swap layer
	Conception of data handling and memory in Hot-Swap

	Printing a project
	Setting the page size for a project
	Inscription and layout of pages
	Printer control settings
	Adding your corporate logo on the printed pages
	Adding your corporate copyright note
	Printed pages

	Functions and function blocks
	Basic functions
	Arithmetic functions
	Type conversion
	Rules for conversion
	General type converting functions
	Limiting converters
	Scaling converters
	Convert data structure

	String functions
	Bit-Shift functions and logical operations
	Selection- and MIN- / MAX-functions
	Comparison functions

	Basic FBs (basic function blocks)
	Register / Multiplexer
	Register function blocks
	Shift-register and FIFO function blocks

	Edge Detection
	Counter
	Timer / Time functions (Zeitfunktionen)
	Analytic Functions
	Communication Functions
	Signal processing
	Special and helpful basic FBs
	Complex funktion blocks
	PIDT1Control
	Ramp
	DigFilt - digital filtering of signals
	DatFileWrite-function block – generation of iba data files (
	DatFileCleanup-function block – clean up the harddisk

	Global variables
	Global FBs and macros
	Global DLLs
	Local FBs and Macros
	Local DLLs

	Process interface
	Input resources
	FOB-F, FOB-IO or FOB 4i- Input Resources
	FOB-F Buffered Mode
	Signals from Simadyn-D and TDC(FOB-SD / FOB-TDC)
	Input Resources FOB-M/IN
	L2Bx/2 Flatness
	Reflective Memory (RM)
	TCP/IP-TechnoString
	CSV-TechnoString
	eCon/PPIO IN – inputs from eCon / eCon32
	PlaybackIN – inputs for the playback operation mode
	Generator
	System UTC Time

	Output Resources
	FOB-IO or FOB 4o-Output Resources
	FOB-F OUT Buffered Mode
	FOB-SD / FOB-TDC OUT – Output Resources
	FOB-M /Out – output resources
	TCP/IP-Output Resources
	TCP/IP-Out PDA – signal outputs to a PDA-system
	TCP/IP Out Techno outputs

	QDA Out- output resources
	QDA/PLR OUT - resources
	Channels
	3X-Channels for QDA and ibaVision3X
	Variables
	Controls
	Material tracking (QDA Recorder #6 controls)
	Strip Tags

	Reflective Memory (RM)
	eCon/PPIO OUT – outputs to eCon / eCon32
	Playback OUT

	OPC - Communication
	OPC Automation Server Object Model
	Installation of the OPC Driver-DLLs
	OPC-sample application with Visual Basic

	Installation
	Installation of ibaLogic
	Installation with install wizard (for eCon only)
	Standardinstallation from CD

	USB dongle
	USB dongle and Windows XP
	USB dongle and Windows NT
	Security settings in Windows XP

	System configuration for ISA-cards
	Recommended ISA hardware settings
	The Configuration File "iba_drv.cfg"
	System Configuration with PCI-Cards

	Additional information and examples
	Sample listing for DLL creation
	dllForm.hpp
	SampleDLL.cpp
	SampleDLL.def

	List of reserved names by ibaLogic

	Support and Contact

